

Contents

What is Databricks

Use cases for Azure Databricks

Build an enterprise data Lakehouse

ETL and Data Engineering

Machine learning, AI, and Data science

Data warehousing, Analytics, and BI

Large language models and generative AI

Data governance

DevOps, CI/CD, and task orchestration

Real-time and streaming analytics

Databricks Lakehouse

Medallion Lakehouse Architecture

Bronze layer

Silver Layer

Gold Layer

Data objects in the Databricks Lakehouse

Databricks architecture

Load data

Auto Loader

External Data

Delta Live Tables

Delta Live Tables datasets

Streaming table

Materialized view

Views

Create Delta live pipeline

Pipeline update

Schedule a pipeline

Data quality

Maintenance tasks

Development and production modes

Publish data to Hive metastore

Publish data to Unity Catalog

Ingest data from Unity Catalog

Ingest streaming data from Unity Catalog table

Ingest data from Hive metastore

Ingest data from Auto Loader

Share materialized views (live tables)

Load data with Delta Live Tables

Load files from cloud object storage

Load data from a message bus

Load data from Postgresql table

Load data from JSON table

Manage data quality with Delta Live Tables

Delta Live Tables expectations

Multiple expectations

Data Transformation

Change Data Capture

Pipeline settings

Product Edition

Pipeline mode

Storage Location

Target schema

Autoscaling

Delay Compute Shutdown

Monitor Pipelines

Querying the event log

Query lineage information

Query data quality

Monitor data backlog

Monitor Enhanced Autoscaling events

Monitor compute resource utilization

Query user actions in the event log

Structured Streaming

Read from a data stream.

Auto Loader to read streaming data

Write to a data Sink

Incremental batch write

Read data from Delta Lake

Write to Delta Lake

Read data from Kafka, transform, and write to Kafka

Using Unity Catalog with Structured Streaming

Streaming with Delta lake

Limit input rate

Specify Initial position:

Delta table as a sink

Performing stream-static joins

Processing results from streaming queries

using foreachBatch

Write to Azure Synapse Analytics

Write to any location using foreachBatch

Write to any location using foreach()

Asynchronous progress tracking

Apache Spark

PySpark DataFrames

Create a DataFrame

Create a DataFrame from catalog table

Load data from csv file

Combine DataFrames with join and union

Filter rows in a DataFrame

Select columns from a DataFrame

View the DataFrame

Print the data schema

Save a DataFrame to a table

Run SQL queries in PySpark

Clusters

Cluster policy

Cluster access mode

Cluster Node Type

Driver node

Worker node

Spot instances

Cluster size and autoscaling

Autoscaling local storage

Cluster tags

Spark configuration

Cluster log delivery

Personal Compute resource

Pools

Configure pools to control cost:

Pre-populate pools

Create a Pool

Minimum Idle Instances

Maximum Capacity

Idle Instance Auto Termination

Instance types

Pool tags

Autoscaling local storage

Spot instances

Delete a pool

Databricks Container Services

Single Node clusters

Debugging with the Apache Spark UI

Driver logs

Executor logs

Handling large queries in interactive workflows

Databricks notebooks

Create a Notebook

Develop code in Databricks notebooks

Version history

Set default language

Link to other notebooks

Compute resources for notebooks

Schedule Notebook Job

Export and import Databricks Notebooks

Share a notebook

Databricks widgets

Run a Databricks notebook from another notebook

Unit testing for notebooks

Databricks Workflows

Databricks Jobs

Databricks Jobs and Delta Live Tables

Create & Run Job

Run a job as a service principal

View and manage job runs

Share information between tasks in job

Pass context about job runs into job tasks.

Run tasks conditionally in an Databricks job

Failures handled for continuous jobs

Storage

Connect to Azure Data Lake Storage Gen2 with Unity

Catalog

Connect to Blob Storage

Libraries

Workspace libraries

Upload a Jar, Python egg, or Python wheel

Reference an uploaded jar, Python egg, or Python wheel

Install a workspace library onto a cluster

Move a workspace library

Delete a workspace library

Cluster libraries

Install libraries from a package repository

Install libraries from object storage

Databricks Repos

Connect to a GitHub repo using a personal access token

Add or edit Git credentials in Databricks

Git operation with repos

Add a repo and connect remotely later

Clone a repo connected to a remote repo

Access the Git dialog

Rebase a branch on another branch

Databricks File System (DBFS)

Interact with files in cloud-based object storage

Mount object storage

DBFS root

DBFS work with Unity Catalog

Default Location

FileStore

Browse files in DBFS

Work with Files

Access files on the DBFS root

Optimization & Performance

Optimize performance with caching

Configure disk usage

Enable or disable the disk cache.

Dynamic file pruning

Low shuffle merge

Delta Lake

Delta Lake operations

Create a table

Upsert to a table

Read a table

Write to a table

Update a table

Delete from a table

Display table history

Time travel

Optimize a table

Z-order by columns

Clean up snapshots with VACUUM

Delta Lake table history

Delta Lake time travel

Restore a Delta table to an earlier state

Vacuum unused data files

Optimize Tables

Z-order indexes

Change Data Feed

Use cases

Enable change data feed

Read changes in batch queries

Read changes in streaming queries

Table constraint

Upsert into a Delta Lake table using merge

Custom Metadata

Generated columns

Idempotent writes

Delta Lake schema validation

Selectively overwrite

Update Schema

Partitioning Tables

Clone Delta Table

Clone types

Clone for data archiving

Clone on Unity Catalog

Create a shallow clone

Query or modify a shallow cloned table

Data governance

Unity Catalog

Unity Catalog object model

Metastores

Managed storage

Catalog

Schemas

Tables

Views

Identity management for Unity Catalog

Admin roles for Unity Catalog

Data permissions in Unity Catalog

Cluster access modes for Unity Catalog

Data lineage for Unity Catalog

Unity Catalog metastore

Create a metastore

Enable a workspace for Unity Catalog

Create clusters & SQL warehouses with Unity Catalog

access

Create and manage Catalogs

Create and manage schemas (databases)

Create Tables

Create views

Manage external locations and storage credentials

Query data

Apply Tags

Work with Unity Catalog and the legacy Hive metastore

Upgrade tables and views to Unity Catalog

Databricks SQL

Create a SQL warehouse

Warehouse settings

Warehouse Types

Monitor a SQL Warehouse

Materialized Views

What is Databricks

Databricks is a unified set of tools for building, deploying,

sharing, and maintaining enterprise-grade data solutions at

scale. The Databrick Lakehouse platform integrates with

cloud storage for creating and deploying the cloud

infrastructure associated with Databrick workspace.

Databricks is primarily used to:

Build and deploy data engineering workflows,

machine learning models, analytics dashboards,

and more.

Process, store, clean, share, analyse, model, and

monetize the datasets with solutions from BI to

generative AI.

The Azure Databricks workspace provides a unified interface

and tools for most data tasks, including:

Data processing workflows scheduling and

management

Generating dashboards and visualizations

Managing security, governance, high availability,

and disaster recovery

Data discovery, annotation, and exploration

Machine learning (ML) modeling, tracking, and

model serving

Generative AI solutions

In addition to the workspace UI, user can interact with Azure

Databricks programmatically with the following tools:

REST API

CLI

Terraform

User can create Azure Databrick workspace from Azure

portal. The integration is needed between the Azure

Databrick workspace and cloud account. User can configure

this integration. Azure Databricks deploys compute clusters

in the user’s cloud account to process data. Data is stored in

cloud object storage. The compute cluster consists of Virtual

machines which are provisioned in user’s cloud account.

Use cases for Azure Databricks

The following use cases highlight how organization can

leverage Azure Databricks to accomplish tasks essential to

processing, storing, and analysing the data that drives

critical business functions and decisions.

Build an enterprise data Lakehouse

The Data Lakehouse combines the strengths of enterprise

data warehouses and data lakes to accelerate, simplify, and

unify enterprise data solutions. The Databricks Lakehouse

combines the ACID transactions and data governance of

enterprise data warehouses with the flexibility and cost-

efficiency of data lakes. The Databricks Lakehouse keeps

data in massively scalable cloud object storage. The primary

components of the Databricks Lakehouse are Delta tables &

Unity Catalog. Delta Lake is an optimized storage layer that

supports ACID transactions and schema enforcement. Unity

Catalog is a unified, fine-grained governance solution for

data and AI. Delta lake & Unity Catalog will be covered in

detail in later part of the book.

Data Lakehouse often use a data design pattern that

incrementally improves, enriches, and refines data as it

moves through layers of staging and transformation. Data

Lakehouse enables business intelligence (BI) and machine

learning (ML) on all data. Data engineers, data scientists,

analysts, and production systems can all use the data

lakehouse as their single source of truth.

ETL and Data Engineering

Databricks combines the power of Apache Spark with Delta

Lake and custom tools to provide an ETL (extract, transform,

load) pipeline. Data engineering provides data that is

available, clean, and stored in data models. User can use

SQL, Python, and Scala to compose ETL logic and then

orchestrate scheduled job deployment.

Databricks provides a number of custom tools for data

ingestion, including Auto Loader, an efficient and scalable

tool for incrementally loading data from cloud object storage

and data lakes into the data lakehouse.

Machine learning, AI, and Data science

Databricks machine learning provides a suite of tools

tailored to the needs of data scientists and ML engineers,

including MLflow and the Databricks Runtime for Machine

Learning.

Data warehousing, Analytics, and BI

Databricks provide a powerful platform for running analytic

queries. Administrators configure scalable compute clusters

as SQL warehouses, allowing end users to execute complex

queries. Users can run queries against data in the lakehouse

using the SQL query editor or in notebooks.

Large language models and generative AI

Databricks Runtime for Machine Learning includes libraries

like Hugging Face Transformers

that allow us to integrate existing pre-trained models into

the workflow.

With Databricks, user can customize a LLM on data for a

specific task. With the support of open-source tooling, such

as Hugging Face and DeepSpeed, user can efficiently take a

foundation LLM and start training with their own data to

have more accuracy for domain and workload.

Data governance

Unity Catalog provides a unified data governance model for

the Data Lakehouse. Access control permissions are

configured for Unity Catalog. Databricks administrators can

manage permissions for teams and individuals. Privileges

are managed with access control lists (ACLs) through UIs or

SQL syntax. The lakehouse makes data sharing within

organization as simple as granting query access to a table

or view. For sharing outside of secure environment, Unity

Catalog features a managed version of Delta Sharing.

DevOps, CI/CD, and task orchestration

Databrick provides tools for versioning, automating,

scheduling, deploying code and production resources. It

simplifies monitoring, orchestration, and operations.

Databrick Workflows schedule Azure Databricks notebooks,

SQL queries, and other arbitrary code. Repos let user sync

Azure Databricks projects with a number of popular git

providers like GitHub Enterprise, Bitbucket Server, Azure

DevOps Server, and GitLab.

Real-time and streaming analytics

Azure Databricks leverages Apache Spark Structured

Streaming to work with streaming data and incremental

data changes. Structured Streaming integrates tightly with

Delta Lake. These technologies provide the foundations for

both Delta Live Tables and Auto Loader. These topics will be

covered in later part of the book.

Databricks Lakehouse

A data Lakehouse is a new, open data management

architecture that combines the flexibility, cost-efficiency,

and scale of Data Lake and ACID transactions of data

warehouses. It enables business intelligence (BI) and

machine learning (ML) on all data.

Data Lakehouses are enabled by combining data structures

and data management features of Data warehouse and low-

cost storage used for Data lakes. Merging data warehouse &

Data lakes together into a single system helps move data

team faster. Data Lakehouse also ensures that teams have

the most complete and up-to-date data available for data

science, machine learning, and business analytics projects.

As can be seen from the above image, Business intelligence

(BI) and Machine learning (ML) using Data Lake required

both Data warehouse and Data lake. This increases

complexity in case of using just Data Lake.

Lakehouse provides the following key features:

Transaction support: - It provides ACID support

which ensures consistency as multiple users

concurrently read or write data. Lakehouse uses

Delta Lake and builds upon the ACID guarantees

provided by the open-source Delta Lake protocol.

ACID stands for atomicity, consistency, isolation,

and durability.

Schema enforcement and governance: - The

Lakehouse support schema enforcement and

evolution.

BI support: Lakehouse enable using BI tools

directly on the source data. This reduces staleness

and reduces latency,

Storage is decoupled from compute: - Storage and

compute are separated. Thus, these systems can

scale to many more concurrent users and larger

data sizes.

Openness: - The storage formats used are open and

standardized, such as parquet. Databrick

Lakehouse provide an API so that data can be

accessed directly from applications.

Support for unstructured to structured data: - The

Lakehouse can be used to store, refine, analyse,

and access data types needed for many new data

applications. Data can be images, video, audio,

semi-structured data, and text.

End-to-end streaming: - It support streaming, and

this eliminates the need for separate systems

dedicated to serving real-time data applications.

Lakehouse Delta Lake transactions use log files stored

alongside data files to provide ACID guarantees at a table

level. Because the data and log files backing Delta Lake

tables live together in cloud object storage, reading and

writing data can occur simultaneously without risk of many

queries resulting in performance degradation or deadlock.

All requests will connect to the same single copy of the

data, and they will receive the most current version of the

data at the time of query execution.

Medallion Lakehouse Architecture

The architecture provides a multi-layered approach to

building a single source of truth. This architecture

guarantees atomicity, consistency, isolation, and durability

as data passes through multiple layers of validations and

transformations before being stored in a layout optimized

for efficient analytics. The terms bronze (raw), silver

(validated), and gold (enriched) describe the quality of the

data in each of these layers.

Medallion architecture does not replace other dimensional

modelling techniques. Schemas and tables within each layer

can take on a variety of forms and degrees of normalization

depending on the frequency and nature of data updates and

the downstream use cases for the data.

Bronze layer

The bronze layer contains raw unvalidated data. Data

ingested in the bronze layer typically:

Maintains the raw state of the data source.

Is appended incrementally and grows over time.

Can be any combination of streaming and batch

transactions.

Retaining the full, unprocessed history of each dataset

provides us the ability to recreate any state of a given data

system.

Silver Layer

T he silver layer represents a validated, deduplicated &

enriched version of data that can be trusted for downstream

analytics. Implementing a silver layer efficiently will

immediately unlock many of the potential benefits of the

Lakehouse.

Gold Layer

Gold data is often highly refined and aggregated, containing

data that powers analytics, machine learning, and

production applications. Gold tables represent data that has

been transformed into knowledge, rather than just

information. Gold tables are often stored in a separate

storage container.

Aggregations, joins, and filtering are handled before data is

written to the gold layer. So, users should see low latency

query performance while retrieving data from gold tables.

Data objects in the Databricks Lakehouse

The Databricks Lakehouse organizes data stored with Delta

Lake in cloud object storage with familiar relations like

database, tables, and views. This model combines many of

the benefits of an enterprise data warehouse with the

scalability and flexibility of a data lake.

The Databricks Lakehouse architecture combines data

stored with the Delta Lake protocol in cloud object storage

with metadata registered to a metastore. The metastore

contains all of the metadata that defines data objects in the

lakehouse.

There are five primary objects in the Databricks Lakehouse.

Catalog: A grouping of databases. Every database is

associated with a catalog.

Database or schema: A grouping of objects in a

catalog. Databases contain tables, views, and

functions.

Table: A collection of rows and columns stored as

data files in object storage.

View: A saved query typically against one or more

tables or data sources. Creating a view does not

process or write any data. Only the query text is

registered to the metastore in the associated

database. Query is executed when view is invoked.

Function: Functions allow user to associate user-

defined logic with a database. Functions can return

either scalar values or sets of rows.

Databricks architecture

Databricks is structured to enable secure cross-functional

team collaboration. Many backend services are managed by

Databricks. Databricks operates out of a control plane and

a data plane.

The control plane includes the backend services

that Databricks manages. Notebook commands and

many other workspace configurations are stored in

the control plane and encrypted at rest.

User’s cloud account manages the data plane

where data resides. This is also where data is

processed. Below is the most common architecture

for Databricks.

Architectures can vary depending on custom configurations

like associating a virtual network with Azure Databrick

workspace for enhanced security.

Data is stored at rest in cloud account in the data plane and

in users’ own data sources. It is not stored in the control

plane. This helps maintaining control and ownership of

data.

Interactive notebook results are stored in a combination of

the control plane (partial results for presentation in the UI)

and cloud storage. If user wants interactive notebook results

stored only in cloud account storage, interactive notebook

results in the customer account for workspace need to be

enabled. This can be done by asking Databricks

representative.

Load data
Databricks offers a variety of ways to load data into a

Lakehouse backed by Delta Lake. The different ways of

loading data are Auto Loader, Delta Live Table, COPY INTO,

external sources etc.

Auto Loader

Auto Loader incrementally processes new data files as they

arrive in cloud storage. Auto Loader can load data files from

AWS S3, Azure Data Lake Storage Gen2 (ADLS Gen2),

Google Cloud Storage, Azure Blob Storage, and Databricks

File System (DBFS, dbfs:/). Auto Loader can ingest JSON,

CSV, PARQUET, AVRO, ORC, TEXT, and BINARYFILE file

formats.

Auto Loader provides a Structured Streaming source

called cloudFiles. Given an input directory path on the cloud

file storage, the cloudFiles source automatically processes

new files as they arrive, with the option of also processing

existing files in that directory. Auto Loader has support for

both Python and SQL in Delta Live Tables.

Auto Loader can be used to process billions of files to

migrate or backfill a table. Auto Loader scales to support

near real-time ingestion of millions of files per hour. Auto

loader ensures that data is processed exactly once. It uses

checkpoint location to store the information of data

processed. In case of failures, Auto Loader can resume from

where it left off by information stored in the checkpoint

location and continue to provide exactly-once guarantees

when writing data into Delta Lake. User don’t need to

maintain or manage any state to achieve fault tolerance or

exactly once semantics.

Databricks recommends Auto Loader whenever user uses

Apache Spark Structured Streaming to ingest data from

cloud object storage. APIs are available in Python and Scala.

In Apache Spark, files can be read incrementally using: -

spark.readStream.format(fileFormat).load(directory)

If the path contains many other files format then use

pathGlobfilter for filtering only those files e.g., if user would

like to parse only csv files in a directory that contains files

with different suffixes, user can do:

When user knows schema, but wants to know whenever

user receives unexpected data, Databricks recommends

using the rescuedDataColumn. It will collect all new fields as

well as data type mismatches in _rescued_data.

Auto Loader can be used with Unity Catalog. User can use

Auto Loader to ingest data from any external location

managed by Unity Catalog. User must have READ

FILES permissions on the external location. Unity Catalog

will be covered in later sections.

In the below example, the json data is read from cloud

storage and added to Unity catalog table(dev_table). The

table dev_table is contained in dev_database database

which in turn is contained within dev_catalog catalog .

Auto Loader provides the following benefits over using

Structured Streaming on file source:

Scalability: Auto Loader can discover billions of files

efficiently. Backfills can be performed

asynchronously.

Performance: The cost of discovering files with Auto

Loader scales with the number of files that are

being ingested.

Schema inference and evolution support: Auto

Loader can detect schema drifts. It can notify user

when schema changes happen and rescue data.

Auto Loader can automatically set up file

notification services on storage to make file

discovery much cheaper.

External Data

Databricks has built-in keyword bindings for all the data

formats natively supported by Apache Spark. Databricks

uses Delta Lake as the default protocol for reading and

writing data and tables, whereas Apache Spark uses

Parquet.

The following data formats can be used in Databrick:

Delta Lake

Delta Sharing

Parquet

ORC

JSON

CSV

Avro

Text

Binary

Delta Live Tables
Delta Live Tables is a declarative framework for building reliable,

maintainable, and testable data processing pipelines. Delta Live

Tables manages task orchestration, cluster management, monitoring,

data quality, and error handling. Users define the transformations to

perform on data.

In Delta Live Tables pipeline, streaming tables and materialized views

are defined. Delta Live Tables transforms data based on queries

defined for each processing step. Data quality is enforced using

Delta Live Tables expectations, which allow to define expected data

quality and specify how to handle records that fail those

expectations.

Delta Live Tables datasets are the streaming tables, materialized

views, and views.

Delta Live Tables datasets

Streaming table

A streaming table is a Delta table which supports streaming or

incremental data processing. Streaming tables allow to process a

growing dataset, handling each row only once. Streaming tables are

good for most ingestion workloads because most datasets grow

continuously over time. Streaming tables provides data freshness

and low latency. Streaming table is quite useful for massive scale

transformations, as results can be incrementally calculated as new

data arrives, keeping results up to date without needing to fully

recompute all source data with each update. Streaming tables are

designed for data sources that are append-only.

Materialized view

A materialized view (or live table) is a view where the results have

been precomputed. Materialized views are powerful because they

can handle any changes in the input. Each time the pipeline

executes, query results are recalculated to reflect changes in source

datasets. Delta Live Tables implements materialized views as Delta

tables.

Views

Views in Azure Databricks compute results from source datasets as

they are queried. It leverages caching optimization. Delta Live Tables

does not publish views to the catalog, so views can be referenced

only within the pipeline in which they are defined. Views are useful

as intermediate queries. Databricks recommends using views to

enforce data quality constraints, transform and enrich datasets.

Dataset type How are records processed

through defined queries?

Streaming table Each record is processed exactly

once. This assumes an append-

only source.

Materialized views Records are processed as

required to return accurate

results for the current data state.

Materialized views should be

used for data sources with

updates, deletions, or

aggregations, and for change

data capture processing (CDC).

Views Records are processed each time

the view is queried. Use views for

intermediate transformations and

data quality checks that should

not be published to public

datasets

SQL syntax can be used to declare a dataset with Delta Live Tables.

Databricks recommends Delta Live Tables with SQL as the preferred

way for SQL users to build new ETL, ingestion, and transformation

pipelines. It allows users to declare dependencies between datasets.

This ensures that updates occur in the correct order.

User can use notebooks or SQL files to write Delta Live Tables SQL

queries. The below code declares a Delta Live Tables pipeline on a

dataset containing Wikipedia clickstream data to:

Read the raw JSON clickstream data into a raw data table.

Read the records from the raw data table and use Delta

Live Tables expectations to create a new table that contains

cleansed data.

Use the records from the cleansed data table to make Delta

Live Tables queries that create derived datasets.

The following example creates a table by loading data from JSON

files stored in object storage:

Using SQL:

CREATE OR REFRESH LIVE TABLE clickstream_raw

COMMENT "The raw wikipedia clickstream dataset, ingested from datasets."

AS SELECT * FROM json.`/databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-

uncompressed-json/2015_2_clickstream.json`;

Using Python:

import dlt

from pyspark.sql.functions import *

json_path = "/databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-

uncompressed-json/2015_2_clickstream.json"

@dlt.table(

 comment="The raw wikipedia clickstream dataset, ingested from datasets."

)

def clickstream_raw():

 return (spark.read.format("json").load(json_path))

User can declare new table that queries from other datasets (like

above live table). This creates a dependency that Delta Live Tables

automatically resolves before executing updates. The following code

creates another Live table which refers to the above created table. It

also includes examples of monitoring and enforcing data quality with

expectations.

Using SQL:

CREATE OR REFRESH LIVE TABLE clickstream_prepared(

 CONSTRAINT valid_current_page EXPECT (current_page_title IS NOT NULL)

)

COMMENT "Wikipedia clickstream data cleaned and prepared for analysis."

AS SELECT

 curr_title AS current_page_title,

 CAST(n AS INT) AS click_count,

 prev_title AS previous_page_title

FROM live.clickstream_raw;

Using Python:

@dlt.table(

 comment="Wikipedia clickstream data cleaned and prepared for analysis."

)

@dlt.expect("valid_current_page_title", "current_page_title IS NOT NULL")

def clickstream_prepared():

 return (

 dlt.read("clickstream_raw")

 .withColumn("click_count", expr("CAST(n AS INT)"))

 .withColumnRenamed("curr_title", "current_page_title")

 .withColumnRenamed("prev_title", "previous_page_title")

 .select("current_page_title", "click_count", "previous_page_title")

)

The above live table refers to earlier created live

table(clickstream_raw). It also enforces the data constraint on the

column current_page_title.

Live tables are equivalent conceptually to materialized views. The

traditional views execute logic each time the view is queried but live

tables store the most recent version of query results in data files.

User can declare highly enriched views that power dashboards, BI,

and analytics by declaring tables with specific business logic. The

following code creates an enriched materialized view from the

clickstream_prepared table.

Using SQL :

CREATE OR REFRESH LIVE TABLE top_spark_referers

COMMENT "A table containing the top pages linking to the Apache Spark page."

AS SELECT

 previous_page_title as referrer,

 click_count

FROM live.clickstream_prepared

WHERE current_page_title = 'Apache_Spark'

ORDER BY click_count DESC

LIMIT 10;

Using Python:

@dlt.table(

 comment="A table containing the top pages linking to the Apache Spark page."

)

def top_spark_referrers():

 return (

 dlt.read("clickstream_prepared")

 .filter(expr("current_page_title == 'Apache_Spark'"))

 .withColumnRenamed("previous_page_title", "referrer")

 .sort(desc("click_count"))

 .select("referrer", "click_count")

 .limit(10)

)

The above codes can be put in Databrick notebook which can be

scheduled to execute from Delta Live Table pipeline.

If user needs to calculate intermediate tables that are not intended

for external consumption, user can prevent them from being

published to a schema using the TEMPORARY keyword. Temporary

tables still store and process data according to Delta Live Tables

semantics but should not be accessed outside of the current

pipeline.

To declare temporary table:

CREATE TEMPORARY LIVE TABLE temp_table

AS SELECT ...;

Create Delta live pipeline

User can configure Delta Live Tables pipelines and trigger updates

using the Databricks workspace UI or automated tooling options such

as the API and CLI.

To create the pipeline:

Click Workflows in the Databricks workspace UI sidebar,

click the Delta Live Tables tab, and click Create Pipeline.

Specify the pipeline name, product edition, pipeline mode

and other details. The pipeline mode is continuous or

triggered.

Triggered pipelines update once and then shut down the cluster

until the next manual or scheduled update. Continuous

pipelines keep an always running cluster that ingests new data

as it arrives. This property can be changed as requirements

evolve.

To avoid unnecessary processing in continuous execution mode,

pipelines automatically monitor dependent Delta tables and

perform an update only when the contents of those dependent

tables have changed.

Triggered pipelines can reduce resource consumption and

expense. However, new data won’t be processed until the

pipeline is triggered. Continuous pipelines require an always-

running cluster, which is more expensive but reduces

processing latency.

The following table highlights differences between these

execution modes:

Triggered Continuous

When does the

update stop?

Automatically once

complete.

Runs continuously

until manually

stopped.

What data is

processed?

Data available

when the update is

All data as it

arrives at

started. configured

sources.

What data

freshness

requirements is

this best for?

Data updates run

every 10 minutes,

hourly, or daily.

Data updates

desired between

every 10 seconds

and a few

minutes.

Choose the notebook path that user wants to run as part of

this pipeline. This notebook contains the live table datasets

definitions. For each dataset, Delta Live Tables compares

the current state with the desired state and proceeds to

create or update datasets.

Choose the destination by specifying a Target schema to

publish dataset to the Hive metastore or a Catalog and

a Target schema to publish the dataset to Unity Catalog.

If user does not specify a target for publishing data, tables

created in Delta Live Tables pipelines can only be accessed by

other operations within that same pipeline.

Define the cluster policy where user specifies the

autoscaling options.

Click Notifications to configure one or more email

addresses to receive notifications for pipeline events.

Notifications will be sent when the following occurs:

A pipeline update completes successfully.

Each time a pipeline update fails.

A single data flow fails.

Data access permissions are configured through the cluster used for

execution. Make sure that cluster has appropriate permissions

configured for data sources and the target storage location.

Once a pipeline is configured, user can trigger a pipeline update to

calculate results for each dataset in pipeline.

Pipeline update

Once user creates a pipeline and are ready to run it, user starts

an update. This is starting the pipeline. To start an update for a

pipeline, click the “Start” button in the top panel. The system returns

a message confirming that the pipeline is starting.

After successfully starting the pipeline, the Delta Live Table system:

Starts a cluster using the defined cluster configuration.

Creates tables that don’t exist and ensures that the schema

is correct for any existing tables.

Updates tables with the latest data available.

Shuts down the cluster when the update is complete.

Pipelines can be run continuously or on a schedule depending on

cost and latency requirements.

The tables and views updated. Tables and views are updated based

on the update type:

Refresh all: All live tables are updated to reflect the current

state of their input data sources. For all streaming tables,

new rows are appended to the table.

Full refresh all: All live tables are updated to reflect the

current state of their input data sources. For all streaming

tables, Delta Live Tables attempts to clear all data from

each table and then load all data from the streaming

source.

Refresh selection: The behaviour of refresh selection is

identical to refresh all but allows us to refresh only selected

tables. For selected streaming tables, new rows are

appended to the table.

Full refresh selection: The behaviour of full refresh

selection is identical to full refresh all but allows to perform

a full refresh of only selected tables.

User can use selective refresh with only triggered pipelines.

Schedule a pipeline

User can start a triggered pipeline manually or run the pipeline on a

schedule with an Azure Databricks job .

To create a single-task job and a schedule for the job in the Delta

Live Tables UI:

Click Schedule > Add a schedule.

Enter a name for the job in the Job name field.

Set the Schedule to Scheduled.

Specify the period, starting time, and time zone.

Configure one or more email addresses to receive alerts on

pipeline start, success, or failure.

Click Create.

User can run a Delta Live Tables pipeline as part of a data processing

workflow with Apache Airflow, or Azure Data Factory. User can call

Delta Live Tables API from an Azure Data Factory Web activity to

trigger the pipeline from Azure Data factory.

Data quality

User can use expectations to specify data quality controls on the

contents of a dataset. Expectations are optional clauses user adds to

Delta Live Tables dataset declarations that apply data quality checks

on each record passing through a query.

Maintenance tasks

Delta Live Tables performs maintenance tasks within 24 hours of a

table being updated. Maintenance can improve query performance

and reduce cost by removing old versions of tables. System performs

a full OPTIMIZE operation followed by VACUUM. User can disable

OPTIMIZE for a table by

setting pipelines.autoOptimize.managed = false in the table

properties for the table. Maintenance tasks are performed only if a

pipeline update has run in the 24 hours before the maintenance

tasks are scheduled.

Development and production modes

Pipeline execution can be optimized by switching between

development and production modes. Use the Development or

production buttons in the Pipelines UI to switch between

Development or production modes. By default, pipelines run in

development mode.

When pipeline is run in development mode, the Delta Live Tables

system does the following:

Reuses a cluster to avoid the overhead of restarts. By

default, clusters run for two hours when development mode

is enabled. To change the value, user can define

pipelines.clusterShutdown.delay setting in the configuration

of compute settings as shown below. In the figure below,

the cluster shutdown has been configured to 60 seconds.

Disables pipeline retries so user can immediately detect

and fix errors.

In production mode, the Delta Live Tables system does the following:

-

Restarts the cluster for specific recoverable errors, including

memory leaks and stale credentials.

Retries execution in the event of specific errors, e.g., a

failure to start a cluster.

In production mode, the default value for

pipelines.clusterShutdown.delay is 0 seconds. Cluster is

always running.

Switching between development and production modes only affects

cluster and pipeline execution behaviour. Storage locations and

target schemas in the catalog for publishing tables are not affected

when switching between modes.

Publish data to Hive metastore

The output data of pipeline can be published to the Hive

metastore. To publish datasets to the metastore, enter a schema

name in the Target field when user creates a pipeline. User can also

add a target database to an existing pipeline.

By default, all tables and views created in Delta Live Tables are local

to the pipeline. User must publish tables to a target schema to query

or use Delta Live Tables datasets (created outside the pipeline).

If user needs to calculate intermediate tables that are not intended

for external consumption, user can prevent them from being

published to a schema using the TEMPORARY keyword. Temporary

tables still store and process data according to Delta Live Tables

semantics, but can’t not be accessed outside of the current

pipeline. User can define the temporary table in SQL like:

In python, the temporary tables can be defined like: -

Publish data to Unity Catalog

Unity Catalog can be used with Delta Live Tables pipelines to:

Define a catalog in Unity Catalog where pipeline will persist

data.

Read data from Unity Catalog tables.

A single pipeline cannot write to both the Hive metastore and Unity

Catalog and existing pipelines cannot be upgraded to use Unity

Catalog. Existing pipelines that use the Hive metastore cannot be

upgraded to use Unity Catalog. To migrate an existing pipeline that

writes to Hive metastore, a new pipeline must be created and data

need to be re-ingested from the data source.

To create tables in Unity Catalog from a Delta Live Tables pipeline,

user must have USE CATALOG privileges on the target catalog,

CREATE TABLE and USE SCHEMA privileges in the target schema.

User must have CREATE MATERIALIZED VIEW and USE

SCHEMA privileges in the target schema if pipeline

creates materialized views.

When Delta Live Table is configured to persist data to Unity Catalog,

the lifecycle of the table is managed by the Delta Live Tables

pipeline.

When a table is removed from the Delta Live Tables pipeline

definition, the corresponding materialized view or

streaming table entry is removed from Unity Catalog on the

next pipeline execution. The actual data is retained for a

period so that it can be recovered if it was deleted by

mistake. The data can be recovered by adding the

materialized view or streaming table back into the pipeline

definition.

Deleting the Delta Live Tables pipeline results in deletion of

all tables defined in that pipeline. Because of this change,

the Delta Live Tables UI is updated to prompt user to

confirm deletion of a pipeline.

To write tables to Unity Catalog, while creating pipeline, select Unity

Catalog under Storage options, select a catalog in

the Catalog dropdown menu, and provide a database name in

the Target schema field.

Ingest data from Unity Catalog

Pipeline configured to use Unity Catalog can read data from Unity

Catalog managed and external tables, views, materialized views and

streaming tables.

Using SQL:

CREATE OR REFRESH LIVE TABLE

 table_name

AS SELECT

 *

FROM

 my_catalog.my_schema.table1;

Using Python:

@dlt.table

def table_name():

 return spark.table("my_catalog.my_schema.table")

Ingest streaming data from Unity Catalog table

In case of streaming changes, the stream can be read.

Using SQL:

CREATE OR REFRESH STREAMING TABLE

 table_name

AS SELECT

 *

FROM

 STREAM(my_catalog.my_schema.table1);

Using Python:

@dlt.table

def table_name():

 return spark.readStream.table("my_catalog.my_schema.table")

Ingest data from Hive metastore

A pipeline that uses Unity Catalog can read data from Hive metastore

tables using the hive_metastore catalog.

Using SQL:

CREATE OR REFRESH LIVE TABLE

 table_name

AS SELECT

 *

FROM

 hive_metastore.my_schema.table;

Using Python:

@dlt.table

def hivetable():

 return spark.table("hive_metastore.my_schema.table")

Ingest data from Auto Loader

The streaming data can be ingested using Auto loader.

SQL:

CREATE OR REFRESH STREAMING TABLE

 table_name

AS SELECT

 *

FROM

 cloud_files(

 <path-to-uc-external-location>,

 "json"

)

Python:

@dlt.table(table_properties={"quality": "bronze"})

def table_name():

 return (

 spark.readStream.format("cloudFiles")

 .option("cloudFiles.format", "json")

 .load(f"{path_to_uc_external_location}")

)

Share materialized views (live tables)

The tables created by a pipeline can be queried only by the pipeline

owner. Other users can be given the ability to query a table by

using GRANT statements. Access can be revoked using

REVOKE statements.

To grant select on table:

GRANT SELECT ON TABLE

 my_catalog.my_schema.live_table

TO

 `user@abc.com`

To revoke the access:

REVOKE SELECT ON TABLE

 my_catalog.my_schema.live_table

FROM

 `user@abc.com`

To grant create table privileges, it can be done through:

GRANT CREATE TABLE ON SCHEMA

 my_catalog.my_schema

TO

 `user@abc.com`

To grant create materialized view privileges, it can be done through:

GRANT CREATE MATERIALIZED VIEW ON SCHEMA

 my_catalog.my_schema

TO

 `user@abc.com`

Load data with Delta Live Tables

User can load data from any data source supported by Apache Spark

on Databricks using Delta Live Tables. User can define datasets

(tables and views) in Delta Live Tables against any query that returns

a Spark DataFrame.

Load files from cloud object storage

Databricks recommends using Auto Loader with Delta Live Tables for

most data ingestion tasks from cloud object storage. Auto Loader

and Delta Live Tables are designed to incrementally load ever-

growing data as it arrives in cloud storage. The following examples

use Auto Loader to create datasets from CSV and JSON files:

Using SQL:

CREATE OR REFRESH STREAMING TABLE customers

AS SELECT * FROM cloud_files("/databricks-datasets/retail-org/customers/", "csv")

CREATE OR REFRESH STREAMING TABLE sales_orders_raw

AS SELECT * FROM cloud_files("/databricks-datasets/retail-org/sales_orders/", "json")

Using Python:-

@dlt.table

def customers():

 return (

 spark.readStream.format("cloudFiles")

 .option("cloudFiles.format", "csv")

 .load("/databricks-datasets/retail-org/customers/")

)

@dlt.table

def sales_orders_raw():

 return (

 spark.readStream.format("cloudFiles")

 .option("cloudFiles.format", "json")

 .load("/databricks-datasets/retail-org/sales_orders/")

)

Load data from a message bus

User can configure Delta Live Tables pipelines to ingest data from

message buses with streaming tables. The following code configures

a streaming table to ingest data from Kafka:

import dlt

@dlt.table

def kafka_raw():

 return (

 spark.readStream

 .format("kafka")

 .option("kafka.bootstrap.servers", "<server:ip>")

 .option("subscribe", "topic1")

 .option("startingOffsets", "latest")

 .load()

)

User can write subsequent operations in pure SQL to perform

streaming transformations on this data as shown below:

CREATE OR REFRESH STREAMING TABLE streaming_silver_table

AS SELECT

 *

FROM

 STREAM(LIVE.kafka_raw)

WHERE ...

Load data from Postgresql table

The following example declares a materialized view to access the

current state of data in a remote Postgresql table.

import dlt

@dlt.table

def postgres_raw():

 return (

 spark.read

 .format("postgresql")

 .option("dbtable", table_name)

 .option("host", database_host_url)

 .option("port", 5432)

 .option("database", database_name)

 .option("user", username)

 .option("password", password)

 .load()

)

Load data from JSON table

The following example demonstrates loading JSON to create Delta

Live Tables.

Using SQL:

CREATE OR REFRESH LIVE TABLE clickstream_raw

AS SELECT * FROM json.`/databricks-datasets/.../2015_2_clickstream.json`

Using Python:

@dlt.table

def clickstream_raw():

 return (spark.read.format("json").load("/databricks-datasets/... /2015_2_clickstream.json"))

For direct file access using SQL with Delta Live Tables, user can use

command like shown below. This SQL construct is common to all SQL

environments on Databricks.

SELECT * FROM format.`path`

Manage data quality with Delta Live Tables

Expectations are used to define data quality constraints on the

contents of a dataset. Expectations provide guarantee that data

arriving in tables meets data quality requirements. Expectations can

be applied using Python decorators or SQL constraint clauses.

Delta Live Tables expectations

Expectations are optional clauses that can be added to Delta Live

Tables dataset declarations. Expectations apply data quality checks

on each record passing through a query.

An expectation consists of three things:

A description, which acts as a unique identifier and allows

to track metrics for the constraint.

A boolean statement that always returns true or false based

on some stated condition.

An action to take when a record fails the expectation,

meaning the boolean returns false.

User can apply three actions on invalid records:

warn(default): Invalid records are written to the target.

Failure is reported as a metric for the dataset.

drop: Invalid records are dropped before data is written to

the target. Failure is reported as a metrics for the dataset.

fail: Invalid records prevent the update from succeeding.

Manual intervention is required before re-processing.

Data quality metrics such as the number of records can be viewed

that violate an expectation by querying the Delta Live Table event

log.

Retail invalid records: Use the expect operator when user

wants to keep records that violate the expectation. Records

that violate the expectation are added to the target dataset

along with valid records.

Using Python:

@dlt.expect("valid timestamp", "col(“timestamp”) > '2012-01-01'")

​Using SQL:

​CONSTRAINT valid_timestamp EXPECT (timestamp > '2012-01-01')

Drop Invalid records: Use the expect or drop operator to

prevent further processing of invalid records. Records that

violate the expectation are dropped from the target

dataset.

Using SQL:

CONSTRAINT valid_current_page EXPECT (current_page_id IS NOT NULL and

current_page_title IS NOT NULL) ON VIOLATION DROP ROW

Using python:

@dlt.expect_or_drop("valid_current_page", "current_page_id IS NOT NULL AND

current_page_title IS NOT NULL")

Fail on invalid records:

When invalid records are unacceptable, use

the expect_or_fail operator to stop execution immediately when

a record fails validation. If the operation is a table update, the

system atomically rolls back the transaction.

Using Python:

 @dlt.expect_or_fail("valid_count", "count > 0")

Using SQL:

CONSTRAINT valid_count EXPECT (count > 0) ON VIOLATION FAIL UPDATE

When a pipeline fails because of an expectation violation, User

must fix the pipeline code to handle the invalid data correctly

before re-running the pipeline.

Multiple expectations

User can define expectations with one or more data quality

constraints in Python pipelines.

expect_all: Use expect_all to specify multiple data quality

constraints when records that fail validation should be

included in the target dataset.

expect_all_or_drop:- Use expect_all_or_drop to specify

multiple data quality constraints when records that fail

validation should be dropped from the target dataset:

expect_all_or_fail : Use expect_all_or_fail to specify multiple

data quality constraints when records that fail validation

should halt pipeline execution.

valid_pages = {"valid_count": "count > 0", "valid_current_page": "current_page_id IS

NOT NULL AND current_page_title IS NOT NULL"}

@dlt.table

@dlt.expect_all(valid_pages)

def raw_data():

 # Create raw dataset

@dlt.table

@dlt.expect_all_or_drop(valid_pages)

def prepared_data():

 # Create cleaned and prepared dataset)

In the example above, user is ingesting raw data through

raw_data() table where user is ingesting all data even if the

condition fails of validation. In the next live table, the table

prepared_data is taking only the data which is validated.

Data Transformation

Apache Spark built-in operations, UDFs and custom logic can be used

as transformations in Delta Live Tables pipeline. After transformation,

user can create new streaming tables, materialized views, and views.

Output of transformation are views, materialized views, and

streaming tables.

To ensure pipelines are efficient and maintainable, user should

choose the best dataset type while implementing pipeline queries.

User should go for view when:

User have a large or complex query that user wants to

break into easier-to-manage queries.

User wants to validate intermediate results using

expectations.

User wants to reduce storage and compute costs and do

not require the materialization of query results. Views are

computed on demand. The view is re-computed every time

the view is queried.

User should go for materialized view when:

Materialized views are especially useful in situations where

complex queries or aggregations are performed frequently,

and the underlying data changes infrequently. By storing

the pre-computed results, the database can avoid the need

to execute complex queries repeatedly, resulting in faster

response times. This precomputation of data allows for

faster query response times and improved performance in

certain scenarios.

Materialized view can be consumed by other pipelines, jobs

& queries because a materialized view is a database object

that stores the results of a query as a physical table.

User should go for streaming table when:

A query is defined against a data source that is

continuously or incrementally growing.

Query results should be computed incrementally.

High throughput and low latency are desired for the

pipeline.

User can combine streaming tables and materialized views in a

single pipeline. In streaming tables, where new rows are always

inserted into the source table rather than modified.

A common streaming pattern includes ingesting source data to

create the initial datasets in a pipeline. These initial datasets are

commonly called bronze tables and often perform simple

transformations. By contrast, the final tables in a pipeline, commonly

referred to as gold tables, often require complicated aggregations.

These transformations are better suited for materialized views.

The following examples illustrates streaming Bronze, streaming

Silver & materialized view gold table.

@dlt.table

def streaming_bronze():

 return (

 # Since this is a streaming source, this table is incremental.

 spark.readStream.format("cloudFiles")

 .option("cloudFiles.format", "json")

 .load("abfss://path_to_raw_data")

)

@dlt.table

def streaming_silver():

 # Since user read the bronze table as a stream, this silver table is also

 # updated incrementally.

 return dlt.read_stream("streaming_bronze").where(...)

@dlt.table

def live_gold():

 # This table will be recomputed completely by reading the whole silver table when it is

updated.

 Return dlt.read("streaming_silver").groupBy("user_id").count()

As can be seen from the above example, the streaming_bronze live

table takes data from stream source. The silver live table

streaming_silver takes data from streaming_bronze live table. The

gold live table live_gold is not streaming. It is updated based on data

of whole silver table. The live_gold table is materialized view. The

Gold table inherently create updates rather than append so they are

not supported as streaming tables.

The same can be implemented using SQL as shown below:

CREATE OR REFRESH STREAMING TABLE streaming_bronze

AS SELECT * FROM cloud_files(

 "abfss://path_to_raw_data", "json"

)

CREATE OR REFRESH STREAMING TABLE streaming_silver

AS SELECT * FROM STREAM(LIVE.streaming_bronze) WHERE...

CREATE OR REFRESH LIVE TABLE live_gold

AS SELECT count(*) FROM LIVE.streaming_silver GROUP BY user_id

The streaming table can be joined with any static dimension table to

get more information as shown below.

Using SQL:

CREATE OR REFRESH STREAMING TABLE customer_sales

AS SELECT * FROM STREAM(LIVE.sales)

 INNER JOIN LEFT LIVE.customers USING (customer_id)

Using Python:

@dlt.table

def customer_sales():

 return dlt.read_stream("sales").join(read("customers"), ["customer_id"], "left")

User can use streaming tables to incrementally calculate simple

distributive aggregates like count, min, max, or sum, and algebraic

aggregates like average or standard deviation.

Change Data Capture

User can use change data capture (CDC) in Delta Live Tables to

incrementally update tables based on changes in source data. CDC is

supported in the Delta Live Tables. Delta Live Tables supports

updating tables with slowly changing dimensions (SCD) type 1 and

type 2.

SCD type 1 is used to update records directly. History is not

retained for records that are updated.

SCD type 2 is used to retain a history of records, either on

all updates or on updates to a specified set of columns.

Change data capture will be discussed in detail in later chapters.

Pipeline settings

Delta Live Tables provides a user interface for configuring and editing

pipeline settings. The UI also provides an option to display and edit

settings in JSON. Some advanced options are only available using the

JSON configuration. The following are some of the pipeline settings

that can be configured by user.

Product Edition

The following product editions are available.

Core: - Select core to run streaming ingest workloads.

Select the Core edition if pipeline doesn’t require advanced

features such as change data capture (CDC) or Delta Live

Tables expectations.

Pro: - Select Pro to run streaming ingest and change data

capture (CDC) workloads. The Pro product edition supports

all the Core features, plus support for workloads that

require updating tables based on changes in source data.

Advanced: - Select Advanced to run streaming ingest

workloads, change data capture (CDC) workloads, and

workloads that require expectations. The Advanced product

edition supports the features of the Core and Pro editions

and supports enforcement of data quality constraints with

Delta Live Table expectations.

Pipeline mode

User can choose to update pipeline continuously or with manual

triggers. If the pipeline uses the triggered execution mode, the

system stops processing after successfully refreshing all tables or

selected tables in the pipeline.

If the pipeline uses continuous execution, Delta Live Tables processes

new data as it arrives in data sources to keep tables throughout the

pipeline fresh.

Both materialized views and streaming tables can be updated in

either execution mode.

Storage Location

User must specify storage location for a pipeline that publishes to

the Hive metastore. The primary motivation for specifying a location

is to control the object storage location for data written by pipeline.

All tables, data, checkpoints, and metadata for Delta Live Tables

pipelines are fully managed by Delta Live Tables. Most interaction

with Delta Live Tables datasets happens through tables registered to

the Hive metastore or Unity Catalog.

Target schema

While optional, User should specify a target to publish tables created

by pipeline. Publishing a pipeline to a target makes datasets

available for querying elsewhere in Databricks environment. User

can define target schema in Hive metastore or unity catalog.

Autoscaling

Use Enhanced Autoscaling to optimize the cluster utilization of

pipelines. Enhanced Autoscaling adds additional resources only if the

system determines those resources will increase pipeline processing

speed. Resources are freed when they are no longer needed, and

clusters are shut down as soon as all pipeline updates are complete.

While configuring Enhanced Autoscaling for production pipelines:

Leave the Min workers setting at the default.

Set the Max workers setting to a value based on budget and

pipeline priority.

Delay Compute Shutdown

Delta Live Tables cluster automatically shuts down when not in use.

To control cluster shutdown behaviour, user can

use pipelines.clusterShutdown.delay setting in the pipeline configuration.

The following example sets the pipelines.clusterShutdown.delay value to 60

seconds.

{

 "configuration": {

 "pipelines.clusterShutdown.delay": "60s"

 }

}

When production mode is enabled, the default value for

pipelines.clusterShutdown.delay is 0 seconds. When development

mode is enabled, the default value is 2 hours.

Monitor Pipelines

User can use built-in features in Delta Live Tables for monitoring and

observability for pipelines, including data lineage, update history,

and data quality reporting. Most monitoring data can be reviewed

manually through the pipeline details UI. Some information can be

found by querying the event log metadata.

The pipeline graph displays as soon as an update to a pipeline has

successfully started. Dependencies between datasets in pipeline are

represented by arrows. Details displayed include the pipeline ID,

source libraries, compute cost, product edition, Databricks Runtime

version, and the channel configured for the pipeline. The Run as user

is the pipeline owner.

To receive real-time notifications for pipeline events like successful

completion of a pipeline update or failure of a pipeline update, user

can add email notifications for pipeline events.

The Delta Live Tables event log contains all information related to a

pipeline, including audit logs, data quality checks, pipeline progress,

and data lineage. User can use the event log to track, understand,

and monitor the state of data pipelines.

User can view event log entries in the Delta Live Tables user

interface, the Delta Live Tables API , or by directly querying the

event log.

Querying the event log

The location of the event log and the interface to query the event log

depend on whether pipeline is configured to use the Hive metastore

or Unity Catalog.

Hive Metastore: If pipeline publishes tables to the Hive

metastore, the event log is stored in /system/events under

the storage location. If user has configured pipeline storage

setting as /Users/username/data, the event log is stored in

the /Users/username/data/system/events path in DBFS.

If user has not configured the storage setting, the default event

log location is /pipelines/<pipeline-id>/system/events in DBFS

e.g., if the ID of pipeline is 91de5e48-35ed-11ec-1d4d-0242ac130003 , the

storage location is:

/pipelines/91de5e48-35ed-11ec-1d4d-0242ac130003/system/events .

User can create a view to simplify querying the event log like

shown below:

CREATE OR REPLACE TEMP VIEW event_log_raw AS SELECT * FROM delta.`<event-log-

path>`

Specify event log location in event-log-path. This creates

event_log_raw temporary view. From the view, user can query

and get details about various events.

Unity Catalog: If pipeline publishes tables to Unity Catalog,

user must use the event_log table valued function (TVF) to

fetch the event log for the pipeline. User can retrieve the

event log for a pipeline by passing the pipeline ID or a table

name to the TVF. To retrieve the event log records for the

pipeline with ID, use the command like shown below. Pipeline

id should be provided as part of event_log parameter.

SELECT * FROM event_log("04c78631-3dd7-

4856-b2a6-7d84e9b2638b")

If user doesn’t know the pipeline id but wants to get the

event_log of the pipeline that created or owns table

my_catalog.my_schema.table1 , then use the below command where

table name is provided as input.

 SELECT * FROM event_log(TABLE(my_catalog.my_schema.table1))

To call event_log function, user must use shared cluster or a

SQL warehouse. So, queries

should be called as shown above from the notebook attached

to a shared cluster or use the

SQL editor connected to a SQL warehouse. The event_log TVF

can be called only by the

pipeline owner. So, to simplify querying events for a pipeline,

the owner of the pipeline can

create a view over the event_log function.

 CREATE VIEW event_log_raw AS SELECT * FROM event_log("<pipeline-ID>")

Query lineage information

Events containing information about lineage have the event type

flow_definition. The details:flow_definition object contains the

output_dataset and input_datasets defining each relationship in the

graph. The below query provides the lineage information.

SELECT

 details:flow_definition.output_dataset as output_dataset,

 details:flow_definition.input_datasets as input_dataset

FROM

 event_log_raw

WHERE

 event_type = 'flow_definition'

event_log_raw has been created in the previous section.

Query data quality

If user defines expectations on datasets in pipeline, the data quality

metrics are stored in the details:flow_progress.data_quality.expectations object.

Events containing information about data quality have the event

type flow_progress .

Monitor data backlog

Delta Live Tables tracks how much data is present in the backlog in

the details:flow_progress.metrics.backlog_bytes object. Events containing

backlog metrics have the event type flow_progress . User can retrieve

the backlog data through the below query.

SELECT

 timestamp,

 Double(details :flow_progress.metrics.backlog_bytes) as backlog

FROM

 event_log_raw

WHERE

 event_type ='flow_progress'

Monitor Enhanced Autoscaling events

The event log captures cluster resizes when Enhanced Autoscaling is

enabled in pipeline. Events containing information about Enhanced

Autoscaling have the event type autoscale . The cluster resizing

request information is stored in the details:autoscale object

.

Monitor compute resource utilization

Cluster_resources event provides metrics on the number of task slots

in the cluster, how much those task slots are utilized, and how many

tasks are waiting to be scheduled.

When Enhanced Autoscaling is enabled, cluster_resources events

also contain metrics for the autoscaling algorithm,

including latest_requested_num_executors and

optimal_num_executors.

The following example queries the task queue size history

SELECT

 timestamp,

 Double(details :cluster_resources.avg_num_queued_tasks) as queue_size

FROM

 event_log_raw

WHERE

 event_type = 'cluster_resources'

User can query many metrics like:

avg_task_slot_utilization

num_executors

latest_requested_num_executors

optimal_num_executors

state

Query user actions in the event log

User can use the event log to audit events. Events containing

information about user actions have the event type user_action.

Information about the action is stored in the user_action object in the

details field.

SELECT timestamp, details:user_action:action, details:user_action:user_name FROM

event_log_raw WHERE event_type = 'user_action'

timestamp action user_name

1 2021-05-20T19:36:03.517+0000 START user@abc.com

2 2021-05-20T19:35:59.913+0000 CREATE user@abc.com

3 2021-05-27T00:35:51.971+0000 START user@abc.com

User can view runtime information for a pipeline update, for

example, the Databricks Runtime version for the update.

SELECT details:create_update:runtime_version:dbr_version FROM event_log_raw WHERE

event_type = 'create_update'

Structured Streaming

User can use Databricks for near real-time data ingestion,

processing, machine learning, and AI for streaming data.

Databricks offers numerous optimizations for streaming and

incremental processing. For most streaming or incremental

data processing or ETL tasks, Databricks recommends Delta

Live Tables.

Most incremental and streaming workloads on Databricks

are powered by Structured Streaming, including Delta Live

Tables and Auto Loader.

Apache Spark Structured Streaming is a near-real time

processing engine that offers end-to-end fault tolerance with

exactly-once processing guarantees. The Structured

Streaming engine performs the computation incrementally

and continuously updates the result as streaming data

arrives.

Databricks recommends using Auto Loader to ingest

supported file types from cloud object storage into Delta

Lake. For ETL pipelines, Databricks recommends using Delta

Live Tables (which uses Delta tables and Structured

Streaming).

In addition to Delta Lake and Auto Loader, Structured

Streaming can connect to messaging services such as

Apache Kafka.

User can use Structured Streaming for near real-time and

incremental processing workloads. Databricks recommends

using Delta Live Tables for Structured Streaming workloads.

Read from a data stream.

User can use Structured Streaming to incrementally ingest

data from supported data sources. Structured Streaming

workloads supports the following data sources:

Data files in cloud object storage

Message buses and queues

Delta Lake

Databricks recommends using Auto Loader for streaming

ingestion from cloud object storage.

Auto Loader to read streaming data

The following example demonstrates loading JSON data

(present in cloud object storage) with Auto Loader, which

uses cloudFiles to denote format and options.

The schemaLocation option enables schema inference and

evolution.

raw_df = (spark.readStream

 .format("cloudFiles")

 .option("cloudFiles.format", "json")

 .option("cloudFiles.schemaLocation", “ < path-to-schema-location> ”)

 .load(file_path))

file_path is the path of JSON file or folder containing JSON

files.

Configuring a streaming read (As shown above) does not

actually load data. User must trigger an action on the data

before the stream begins e.g. calling display() on a

streaming DataFrame starts a streaming job.

Structured Streaming supports most transformations that

are available in Databricks and Spark SQL.

Write to a data Sink

A data sink is the target of a streaming write operation.

Common sinks used in Azure Databricks streaming

workloads include the following:

Delta Lake

Message buses and queues

Key-value databases

Most data sinks provide several options to control how data

is written to the target system. During writer configuration,

the main options user might need to set fall into the

following categories:

Output mode (append by default).

A checkpoint location (required for each writer).

Trigger intervals

Options that specify the data sink or format (for

example, file type, delimiters, and schema).

Options that configure access to target systems (for

example, port settings and credentials).

Incremental batch write

The below code does the incremental batch write for

stream. User needs to specify the target location for write

and checkpoint location.

transformed_df.writeStream

 .trigger(availableNow=True)

 .option("checkpointLocation", checkpoint_path)

 .option("path", target_path)

 .start()

The availableNow setting for the trigger instructs Structured

Streaming to process all previously unprocessed records

from the source dataset.

Read data from Delta Lake

To read the data from stream, it can be done through the

code:

spark.readStream.table("<table-name1>")

Write to Delta Lake

To write to a delta table, it can be done through the code:

df.writeStream

 .format("delta")

 .outputMode("append")

 .option("checkpointLocation", "/tmp/delta/events/_checkpoints/")

 .toTable("events")

The above example will write the streaming data to events

table. User must have proper permissions configured to read

source tables and write to target tables and the specified

checkpoint location.

Read data from Kafka, transform, and write to Kafka

Apache Kafka and other messaging buses provide some of

the lowest latency available for large datasets. User can use

Databricks to apply transformations to data ingested from

Kafka and then write data back to Kafka.

The following is an example for a streaming read from

Kafka:

df = (spark.readStream

 .format("kafka")

 .option("kafka.bootstrap.servers", "<server:ip>")

 .option("subscribe", "<topic>")

 .option("startingOffsets", "latest")

 .load())

To write data to kafka:

df.writeStream

 .format("kafka")

 .option("kafka.bootstrap.servers", "<server:ip>")

 .option("topic", "<topic>")

 .option("checkpointLocation", "<checkpoint-path>")

 .start()

Using Unity Catalog with Structured Streaming

Use Structured Streaming with Unity Catalog to manage

data governance for incremental and streaming workloads

on Databricks. The Unity Catalog data governance model

allows to stream data from managed and external tables in

Unity Catalog. User can write data to external tables using

either table names or file paths. Use table name to interact

with managed tables on Unity Catalog.

Streaming with Delta lake

Delta Lake is deeply integrated with Spark Structured

Streaming through readStream and writeStream. Delta Lake

has the following benefits.

Coalescing small files produced by low latency

ingest

Maintaining “exactly-once” processing with more

than one stream (or concurrent batch jobs)

Efficiently discovering which files are new when

using files as the source for a stream

When user loads a Delta table as a stream source and use it

in a streaming query, the query processes all of the data

present in the table as well as any new data that arrives

after the stream is started.

spark.readStream.format("delta").load("Delta_file_path”)

If the schema for a Delta table changes after a streaming

read begins against the table, the query fails.

Limit input rate

The following options are available to control micro-batches:

maxFilesPerTrigger: How many new files to be

considered in every micro-batch. The default is

1000.

maxBytesPerTrigger: How much data gets

processed in each micro-batch.

If user uses maxBytesPerTrigger in conjunction with

maxFilesPerTrigger, the micro-batch processes data until

either the maxFilesPerTrigger or maxBytesPerTrigger limit is

reached.

Structured Streaming does not handle input that is not an

append and throws an exception if any modifications occur

on the table being used as a source. There are two main

strategies for dealing with changes:

User can delete the output and checkpoint and

restart the stream from the beginning.

User can set either of these two options:

ignoreDeletes: ignore transactions that

delete data at partition boundaries

(the WHERE is on a partition column).

spark.readStream.format("delta").option("ignoreDeletes",

"true").load("Delta_file_path")

skipChangeCommits: ignore transactions that

delete or modify existing

records. skipChangeCommits includes

ignoreDeletes.

Specify Initial position:

User can specify the starting point of the Delta Lake

streaming source without processing the entire table. The

options to do this are:

StartingVersion: The Delta Lake version to start

from. All table changes starting from this version

(inclusive) will be read by the streaming source.

The commit versions can be obtained from

the version column of the DESCRIBE

HISTORY command output. In the example below,

the changes are read from version 5 for

user_events table.

spark.readStream.format("delta").option("startingVersion",

"5").load("/tmp/delta/user_events")

StartingTimestamp: The timestamp to start from.

All table changes committed at or after the

timestamp (inclusive) will be read by the streaming

source. In the example below, changes are read

since 2018-10-18, use:

spark.readStream.format("delta").option("startingTimestamp", "2018-10-

18").load("/tmp/delta/user_events")

Delta table as a sink

User can write data into a Delta table using Structured

Streaming. The transaction log enables Delta Lake to

guarantee exactly once processing, even when there are

other streams or batch queries running concurrently against

the table.

By default, streams run in append mode, which adds new

records to the table.

events.writeStream.format("delta")

.outputMode("append")

.option("checkpointLocation", "/tmp/delta/_checkpoints/")

.start("/delta/events")

To save the data in table, use the code like:

events.writeStream

.format("delta")

.outputMode("append")

.option("checkpointLocation", "/tmp/delta/events/_checkpoints/")

.toTable("events")

User can also use Structured Streaming to replace the entire

table with every batch. User has to use complete mode for

outputmode like:

events.writeStream

.format("delta")

.outputMode("complete")

.option("checkpointLocation", "/tmp/delta/events/_checkpoints/")

.toTable("events")

Performing stream-static joins

User can rely on the transactional guarantees and

versioning protocol of Delta Lake to perform stream-

static joins. A stream-static join joins the latest valid version

of a Delta table (the static data) to a data stream using a

stateless join. As can be seen below, inner join is done

between streaming data & static dataframe.

streamingDF = spark.readStream.table("orders")

staticDF = spark.read.table("customers")

query = (streamingDF

 .join(staticDF, streamingDF.customer_id==staticDF.id, "inner")

 .writeStream

 .option("checkpointLocation", checkpoint_path)

 .table("orders_with_customer_info")

)

Processing results from streaming queries

using foreachBatch

User can use a combination of merge and foreachBatch to

write complex upserts from a streaming query into a Delta

table.

from delta.tables import *

deltaTable = DeltaTable.forPath(spark, "/data/aggregates")

Function to upsert microBatchOutputDF into Delta table using merge

def upsertToDelta(microBatchOutputDF, batchId):

 (deltaTable.alias("t").merge(

 microBatchOutputDF.alias("s"),

 "s.key = t.key")

 .whenMatchedUpdateAll()

 .whenNotMatchedInsertAll()

 .execute()

)

Write the output of a streaming aggregation query into Delta table by call

above function

(streamingAggregatesDF.writeStream

 .format("delta")

 .foreachBatch(upsertToDelta)

 .outputMode("update")

 .start()

)

This way the micro batch output of streaming can be

processed for upsert or any other transformation.

Write to Azure Synapse Analytics

User can write the output of a streaming query to Azure

Synapse Analytics using foreachBatch function of

writeStream. It takes each batch of data and write to Azure

synapse analytics. In the example below,

writeToSQLWarehouse function is used to write the batch of

data to Azure synapse analytics. The function is called

during stream write.

from pyspark.sql.functions import *

from pyspark.sql import *

def writeToSQLWarehouse(df, epochId):

 df.write \

 .format("com.databricks.spark.sqldw") \

 .mode('overwrite') \

 .option("url", "jdbc:sqlserver://<the-rest-of-the-connection-string>") \

 .option("forward_spark_azure_storage_credentials", "true") \

 .option("dbtable", "my_table_in_dw_copy") \

 .option("tempdir", "wasbs://<your-container-name>@<your-storage-account-

name>.blob.core.windows.net/<your-directory-name>") \

 .save()

Write the output of a streaming aggregation query into synapse analytics

(streamingAggregatesDF.writeStream

 .format("delta")

 .foreachBatch(writeToSQLWarehouse)

 .outputMode("update")

 .start()

)

Write to any location using foreachBatch

streamingDF.writeStream.foreachBatch function allows to

specify a function that is executed on the output data of

every micro-batch of the streaming query. It takes two

parameters: a DataFrame or Dataset that has the output

data of a micro-batch and the unique ID of the micro-batch.

If user wants to write the output of a streaming query to

multiple locations, then user can simply write the output

DataFrame/Dataset multiple times in the foreachBatch

function, but each attempt to write can cause the output

data to be recomputed (including possible re-reading of the

input data). To avoid recomputation, user should cache the

output DataFrame/Dataset, write it to multiple locations,

and then uncache it. So, in the foreachbatch function, user

should cache this dataframe, do the operation and then

uncache it.

In the code below, the microbatch dataframe is cached and

then this dataframe is written to both places and then it is

the uncached.

batchDF.persist()

batchDF.write.format(...).save(...) // location 1

batchDF.write.format(...).save(...) // location 2

batchDF.unpersist()

Write to any location using foreach()

If user can’t use foreachBatch function due to Databricks

Runtime lower than 4.2 or corresponding batch data writer

does not exist then user can use foreach().

def processRow(row):

 // Write row to storage

query = streamingDF.writeStream.foreach(processRow).start()

Asynchronous progress tracking

Asynchronous progress tracking allows Structured

Streaming pipelines to checkpoint progress asynchronously

and in parallel to the actual data processing within a micro-

batch.

Asynchronous progress tracking enables Structured

Streaming pipelines to checkpoint progress without being

impacted by the offset management operations.

stream = spark.readStream

 .format("kafka")

 .option("kafka.bootstrap.servers", "host1:port1,host2:port2")

 .option("subscribe", "in")

 .load()

stream.writeStream

 .format("kafka")

 .option("topic", "out")

 .option("checkpointLocation", "/tmp/checkpoint")

 .option("asyncProgressTrackingEnabled", "true")

 .start()

In the example above, user is reading stream from kafka

data sources and write the data to a topic.

asyncProgressTrackingEnabled is set to true which enables

the asynchronous progress tracking.

Apache Spark

Apache Spark is the technology which powers compute

clusters and SQL warehouses of Databricks. Databricks

provides an efficient and simple platform for running Apache

Spark workloads.

When user deploys a compute cluster or SQL warehouse on

Databricks, Apache Spark is configured and deployed to

virtual machines. Databricks configure or initialize a Spark

context or Spark session.

Databricks SQL uses Apache Spark under the hood, but end

users use standard SQL syntax to create and query

database objects.

PySpark DataFrames

A DataFrame is a two-dimensional labelled data structure

with columns of potentially different types. Apache Spark

DataFrames provide a rich set of functions (select columns,

filter, join, aggregate) that allow user to solve common data

analysis problems efficiently.

Spark DataFrames and Spark SQL use a unified planning and

optimization engine and hence user will get identical

performance across all supported languages on Databricks

(Python, SQL, Scala, and R).

Create a DataFrame

Most Apache Spark queries return a DataFrame. This

includes reading from a table, loading data from files, and

operations that transform data.

User can create a Spark DataFrame from a list or a panda

DataFrame, such as in the following example:

To create spark dataframe from panda dataframe(pdf):

df1 = spark.createDataFrame(pdf)

To create spark DataFrame from list:

import pandas as pd

data = [[1, "Elia"], [2, "Teo"], [3, "Fang"]]

df2 = spark.createDataFrame(data, schema="id LONG, name STRING")

Create a DataFrame from catalog table

User can load catalog tables to DataFrames through the

below code:

df= spark.read.table("<catalog-name>.<schema-name>.<table-name>")

Load data from csv file

User can load csv file to a dataframe using the below

syntax:

df = (spark.read

 .format("csv")

 .option("header", "true")

 .option("inferSchema", "true")

 .load("csv_file_path")

)

Combine DataFrames with join and union

Dataframes use standard SQL semantics for join operations.

A join returns the combined results of two dataframes based

on the provided matching conditions and join type. The

following example is an inner join between dataframes df1

& df2 based on “id” column. The output dataframe is

joined_df.

joined_df = df1.join(df2, how="inner", on="id")

User can add the combine two dataframes using the union

operation, as in the following example:

unioned_df = df1.union(df2)

Filter rows in a DataFrame

User can filter rows in a DataFrame using filter or where.

There is no difference in performance or syntax. To get

records of dataframe df having id value more than 1, it can

be done through the following code:

filtered_df = df.filter("id > 1")

filtered_df = df.where("id > 1")

Select columns from a DataFrame

User can select columns by passing one or more column

names to select function.

select_df = df.select("id", "name")

View the DataFrame

To view the data in a tabular format, user can use the

Databricks display command.

display(df)

Print the data schema

User can print the schema using the printSchema() method.

df.printSchema()

Save a DataFrame to a table

Databricks uses Delta Lake for all tables by default. User

can save the contents of a DataFrame to a table using the

following syntax:

df.write.saveAsTable("<table-name>")

Run SQL queries in PySpark

Spark Dataframes provide several options to combine SQL

with Python. The selectExpr () method allows to specify

each column as a SQL query, such as in the following

example:

display(df.selectExpr("id", "upper(name) as big_name"))

User can import the expr function from pyspark.sql.functions to

use SQL syntax anywhere a column would be specified, as

in the following example:

from pyspark.sql.functions import expr

display(df.select("id", expr("lower(name) as little_name")))

User can use spark.sql() to run SQL queries in the Python

kernel, as in the following example:

query_df = spark.sql("SELECT * FROM <table-name>")

Because logic is executed in the Python kernel and all SQL

queries are passed as strings, user can use Python

formatting to parameterize SQL queries, as in the following

example. query_df contains the result of sql query as

dataframe.

table_name = "my_table"

query_df = spark.sql(f"SELECT * FROM {table_name}")

Clusters
A Databricks cluster is a set of computation resources and

configurations on which data engineering, data science, and

data analytics workloads are run.

These workloads are run as a set of commands in

a notebook or as an automated job. Clusters are of two

type, all-purpose clusters, and job clusters. All-purpose

cluster is used to analyse data collaboratively using

interactive notebooks. Job cluster is used to run automated

jobs.

All-purpose cluster can be created using the UI, CLI,

or REST API. User can manually terminate and

restart an all-purpose cluster. Multiple users can

share such clusters to do collaborative interactive

analysis.

The Databricks job scheduler creates a job

cluster when user run a job and terminates the

cluster when the job is complete.

User cannot restart a job cluster.

To create a cluster using the user interface:

Click Compute in the sidebar and then Create

compute on the Compute page.

Choose the compute option and create the cluster.

Cluster policy

Cluster policies are a set of rules used to limit the

configuration options available to users when they create a

cluster. Cluster policies have access control list that regulate

which specific users and groups have access to certain

policies. While creating cluster, user must specify the cluster

policy. By default, all users have access to the Personal

Compute policy, allowing them to create single-machine

compute resources.

When creating a cluster, users can only select policies for

which they have been granted permission. To create cluster

policy:

Click Compute in the sidebar

Click the Cluster Policies tab and create policy.

Cluster access mode

Cluster access mode is a security feature that determines

who can use a cluster and what data they can access via

the cluster. When user create any cluster in Azure

Databricks, user must select an access mode. The access

modes are:

Single user: It is always visible to User. It supports

Unity catalog. Supported languages are Python,

SQL, Scala, R. Cluster can be assigned to and used

by a single user only. Dynamic views are not

supported. Credential passthrough is not supported.

Shared: - It is always (Premium plan required)

visible to users. It supports Unity catalog.

Supported languages are Python (on Databricks

Runtime 11.1 and above), SQL. Cluster can be used

by multiple users with data isolation among users.

No isolation shared: Multiple users can use the

same cluster. Users share credentials set at the

cluster level. No data access controls are enforced.

Cluster Node Type

A cluster consists of one driver node and zero or more

worker nodes. By default, the driver node uses the same

instance type as the worker node, but user can choose

separate instance types for the driver and worker nodes.

Different families of instance types fit different use cases,

such as memory-intensive or compute-intensive workloads.

Use GPU-enabled clusters for computationally challenging

tasks that demand high performance, like those associated

with deep learning.

Driver node

The driver node maintains state information of all notebooks

attached to the cluster. The driver node also maintains the

SparkContext, interprets all the commands user run from a

notebook or a library on the cluster, and runs the Apache

Spark master that coordinates with the Spark executors.

The default node type of the driver is the same as the

worker node type. User can choose a larger driver node type

with more memory if user is planning to collect a lot of data

from Spark workers and analyse them in the notebook.

The command to collect the data for dataframe df:

df.collect()

Worker node

Azure Databricks worker nodes run the Spark executors.

When workload is distributed with Spark, all the distributed

processing happens on worker nodes. Databricks runs one

executor per worker node. The terms executor and worker

are used interchangeably in the context of the Databricks

architecture.

To run a Spark job, user needs at least one worker node. If a

cluster has zero workers, user can run non-spark commands

on the driver node, but Spark commands will fail.

Spot instances

To save cost, user can choose to use spot instances by

checking the Spot instances checkbox.

The first instance will always be on-demand (the driver node

is always on-demand) and subsequent instances will be spot

instances. If spot instances are evicted due to unavailability,

on-demand instances are deployed to replace evicted

instances.

Cluster size and autoscaling

When user creates an Azure Databricks cluster, user can

either provide a fixed number of workers for the cluster or

provide a minimum and maximum number of workers for

the cluster.

When user provides a fixed size cluster, Databricks ensures

that cluster has the specified number of workers. When user

provides a range for the number of workers, Databricks

chooses the appropriate number of workers required to run

job. This is referred to as autoscaling.

Autoscaling makes it easier to achieve high cluster

utilization, because user doesn’t need to provision the

cluster to match a workload. Autoscaling thus offers two

advantages:

Workloads can run faster compared to a constant-

sized under-provisioned cluster.

Autoscaling clusters can reduce overall costs

compared to a statically sized cluster.

On the cluster creation and edit page, select the Enable

autoscaling checkbox in the Autopilot Options box:

For the Job cluster, On the cluster creation and edit page,

select the Enable autoscaling checkbox in the Autopilot

Options box:

After enabling autoscaling, configure Min & max workers.

Autoscaling local storage

Databricks automatically enables autoscaling local storage

on all Databricks clusters. With autoscaling local storage,

Databricks monitors the amount of free disk space available

on cluster’s Spark workers. If a worker begins to run too low

on disk, Databricks automatically attaches a new managed

disk to the worker before it runs out of disk space. The

managed disks attached to a virtual machine are detached

only when the virtual machine is returned to cloud

provider. Managed disks are never detached from a virtual

machine as long as they are part of a running cluster.

Cluster tags

Cluster tags allow to easily monitor the cost of cloud

resources used by various groups in organization. User can

specify tags as key-value pairs when user creates a cluster.

Spark configuration

User can provide custom Spark configuration properties in a

cluster configuration. On the cluster configuration page,

click the Advanced Options toggle and Click the Spark tab.

In Spark config, enter the configuration properties as one

key-value pair per line.

To reference a secret in the Spark configuration through

databrick notebook, use the following syntax:

spark.conf.get("spark.<property-name>")

Using SQL, user can get the value using below command:

SELECT ${spark.<property-name>}

Cluster log delivery

When user creates a cluster, user can specify a location to

deliver the logs for the Spark driver node, worker nodes,

and events. Logs are delivered every five minutes to the

chosen destination. Databricks guarantees to deliver all logs

generated up until the cluster was terminated.

The destination of the logs depends on the cluster ID. If the

specified destination is dbfs:/cluster-log-delivery, cluster

logs for id “clustered” are delivered to:

dbfs:/cluster-log-delivery/clustered

To configure the log delivery location:

On the cluster configuration page, click

the Advanced Options toggle.

Click the Logging tab.

Select a destination type.

Enter the cluster log path.

Personal Compute resource

P ersonal Compute is an Azure Databricks-managed

default cluster policy available on all Databricks

workspaces. The policy allows users to easily create single-

machine compute resources for their individual use so they

can start running workloads immediately, minimizing

compute management overhead. Personal compute

resources are all-purpose clusters with the following

properties:

Personal Compute resources are single-node

clusters. The cluster is having no worker and with

spark running in local mode.

Auto-termination is set at 72 hours.

Both standard instances and GPU-enabled instances

are available

If user doesn’t see the Personal Compute policy as an option

when user creates a cluster, then user have not been given

access to the policy. User should contact administrator to

request access to the Personal Compute policy.

To create personal compute cluster, click on Create

Personal Compute. This will open the cluster configuration

dialog with the Personal Compute policy chosen. Click

Create Cluster. This will create Personal compute cluster.

User can set auto termination for a cluster. During cluster

creation, user can specify an inactivity period in minutes

after which user want the cluster to terminate. If the

difference between the current time and the last command

run on the cluster is more than the inactivity period

specified, Databricks automatically terminates that cluster.

User can configure automatic termination in the create

cluster UI. Ensure that the box is checked and enter the

number of minutes in the Terminate after ___ of minutes of

inactivity setting.

Pools

Databricks pools are a set of idle, ready-to-use

instances. When cluster nodes are created using the idle

instances, cluster start, and auto-scaling times are reduced.

If the pool has no idle instances, the pool expands by

allocating a new instance from the instance provider to

accommodate the cluster’s request. This can lead to

increase in time for instance allocation as new instance will

be created and allocated. In case of idle instance in pool,

since it is already available then allocation is quick, and

performance is not impacted. When a cluster releases an

instance, it returns to the pool and is free for another cluster

to use. Only clusters attached to a pool can use that pool’s

idle instances.

Creating a pool reduces cluster start and scale-up times by

maintaining a set of available, ready-to-use instances.

Databricks recommends taking advantage of pools to

improve processing time while minimizing cost.

User can specify a different pool for the driver node and

worker nodes or use the same pool for both. Azure

Databricks does not charge DBUs while instances are idle in

the pool. Cloud instance provider billing does apply as idle

instance is created by the cloud provider.

If driver node and worker nodes have different

requirements, create a different pool for each. User can

minimize instance acquisition time by creating a pool for

each instance type e.g., if most data engineering clusters

use instance type A, data science clusters use instance type

B, and analytics clusters use instance type C, create a pool

with each instance type.

Pools should be used for job with strict execution times

requirements. When cost saving takes priority over

reliability then use Pools with spot instances.

Configure pools to control cost:

User can use the following configuration options to help

control the cost of pools:

Set the Min Idle instances to 0 to avoid paying for

running instances that aren’t doing work. The trade-

off is a possible increase in time when a cluster

needs to acquire a new instance.

Set the Idle Instance Auto Termination time to

provide a buffer between when the instance is

released from the cluster and when it’s dropped

from the pool. This is helpful to ensure that idle

instances remain available for subsequent jobs.

Set the Max Capacity based on anticipated usage.

This sets the ceiling for the maximum number of

used and idle instances in the pool. Set the

maximum capacity only if there is a strict instance

quota or budget constraint.

Pre-populate pools

To benefit fully from pools, user should pre-populate newly

created pools. Set the Min Idle instances greater than zero

in the pool configuration. This is to ensure than Pool have

available instances for the job.

If user wants to set this value to zero, use a starter job to

ensure that newly created pools have available instances for

clusters to access. With the starter job approach, schedule a

job to run before jobs or users start using clusters. After the

job finishes, the instances used for the job are released back

to the pool. Set Min Idle instance setting to 0 and set

the Idle Instance Auto Termination time high enough to

ensure that idle instances remain available for subsequent

jobs.

Using a starter job allows the pool instances to spin up,

populate the pool, and remain available for job or

interactive clusters.

Create a Pool

To create a pool using the UI:

Click Compute in the sidebar.

Click the Pools tab.

Click the Create Pool button.

Specify the pool configuration.

Click the Create button.

To attach a cluster to a pool using the cluster creation UI,

select the pool from the Driver Type or Worker

Type dropdown while configuring the cluster. Available pools

are listed at the top of each dropdown list. User can use the

same pool or different pools for the driver node and worker

nodes.

Minimum Idle Instances

When user creates a pool, in order to control its size, user

can set three parameters: minimum idle instances,

maximum capacity, and idle instance auto termination.

The minimum number of instances the pool keeps idle.

These instances do not terminate, regardless of the auto

termination settings. If a cluster consumes idle instances

from the pool, Azure Databricks provisions additional

instances to maintain the minimum.

Maximum Capacity

The maximum number of instances the pool can provision. If

a cluster using the pool requests more instances than this

number during autoscaling, the request fails with

an INSTANCE_POOL_MAX_CAPACITY_FAILURE error. This

configuration is optional. This is preferred if user have

instance quota, or user needs to cap cost.

Idle Instance Auto Termination

The time in minutes that instances can be idle before being

terminated by the pool.

Instance types

User defines instance type when creating a pool. A pool’s

instance type cannot be edited. Clusters attached to a pool

use the same instance type for the driver and worker nodes.

Based on use cases, such as memory-intensive or compute-

intensive workloads, user can choose different families of

instance types.

Pool tags

Pool tags allow to easily monitor the cost of cloud resources

used by various groups in organization. User can specify

tags as key-value pairs when user creates a pool.

Databricks applies three default tags to each

pool: Vendor, DatabricksInstancePoolId,

and DatabricksInstancePoolCreatorId. User can also add

custom tags while creating a pool. User can add up to 41

custom tags. Pool-backed clusters inherit default and

custom tags from the pool configuration.

To add additional tags to the pool, navigate to the Tabs tab

at the bottom of the Create Pool page. Click the +

Add button, then enter the key-value pair.

Autoscaling local storage

Azure Databricks automatically enables autoscaling local

storage on all Azure Databricks pools.

With autoscaling local storage, Azure Databricks monitors

the amount of free disk space available on pool’s instances.

If an instance runs too low on disk, a new managed disk is

attached automatically before it runs out of disk space.

Managed disks are never detached from a virtual machine if

it is part of a pool. The managed disks attached to a virtual

machine are detached only when the virtual machine is

returned to cloud provider.

Spot instances

To save cost, user can choose to use spot instances by

checking the All Spot radio button. Clusters in the pool will

launch with spot instances for all nodes, driver, and worker.

If spot instances are evicted due to unavailability, on-

demand instances do not replace evicted instances.

Delete a pool

Deleting a pool terminates the pool’s idle instances and

removes its configuration. If user deletes the pool then

Running clusters attached to the pool continue to

run but cannot allocate instances during resize or

up-scaling.

Terminated clusters attached to the pool will fail to

start.

Databricks Container Services

Databricks Container Services lets us specify a Docker

image while creating a cluster. Some examples use cases

include:

Library customization: User have full control over

the system libraries user wants installed.

Golden container environment: Docker image is a

locked down environment that will never change.

Docker CI/CD integration: User can integrate Azure

Databricks with Docker CI/CD pipelines.

User can also use Docker images to create custom deep

learning environments on clusters with GPU devices.

To launch cluster using UI:

On the Create Cluster page, specify a Databricks

Runtime Version that supports Databricks Container

Services.

Under Advanced options, select the Docker tab.

Select Use your own Docker container.

In the Docker Image URL field, enter custom Docker

image.

Docker image URL examples:

Docker Hub : <organization>/<repository>:<tag>

(e.g.databricksruntime/standard:latest)

​Azure Container Registry: <your-registry-

name>.azurecr.io/<repository-name>:<tag>

Single Node clusters

A Single Node cluster is a cluster consisting of an Apache

Spark driver and no Spark workers. A Single Node cluster

supports Spark jobs and all Spark data sources,

including Delta Lake. A Standard cluster requires a

minimum of one Spark worker to run Spark jobs. Single

Node clusters are helpful for:

Single-node machine learning workloads that use

Spark to load and save data.

Lightweight exploratory data analysis

To create a Single Node cluster, select the Single

Node button while configuring a cluster. A Single Node

cluster has the following properties:

Runs Spark locally.

The driver acts as both master and worker, with no

worker nodes.

A Single Node cluster has the following limitations:

Large-scale data processing will exhaust the

resources on a Single Node cluster. For these

workloads, Databricks recommends using a Multi

Node cluster.

Single Node clusters are not designed to be

shared.

Single Node clusters are not compatible with

process isolation.

GPU scheduling is not enabled on Single Node

clusters.

Debugging with the Apache Spark UI

There are different debugging options available to peek at

the internals of Apache Spark application. The three

important places to look are:

Spark UI

Driver logs

Executor logs

Spark UI

Once the job is started, the Spark UI shows information

about what’s happening in the application. To get to the

Spark UI, click the attached cluster.

Streaming tab

Once user gets to the Spark UI, user will see a Streaming

tab if a streaming job is running in this cluster. If there is no

streaming job running in this cluster, this tab will not be

visible. Skip to Driver logs to learn how to check for

exceptions that might have happened while starting the

streaming job.

The first thing to look for in this page is to check if

streaming application is receiving any input events from

source.

Processing time

Processing Time graph helps to understand the performance

of streaming job. As a general rule of thumb, it is good if

user can process each batch within 80% of batch processing

time e.g., if the batch interval is 2 seconds and the average

processing time is 450ms, which is well under the batch

interval. If the average processing time is closer or greater

than the batch interval, then user will have a streaming

application that will start queuing up resulting in backlog.

The backlog can soon bring down streaming job eventually.

Completed batches

The end of the page displays details about the last 1000

batches that completed. From the table, user can get the

numbers of events processed for each batch and their

processing time. User can click the batch link to get more

details.

Job details page

The job details page shows a DAG visualization. This is a

very useful to understand the order of operations and

dependencies for every batch. At the bottom of the page,

user will also find the list of jobs that were executed for this

batch. User can click the links in the description to drill

further into the task level execution.

Driver logs

Driver logs are helpful for 2 purposes:

Exceptions: Sometimes, User may not see the

Streaming Tab in the Spark UI. This is because the

Streaming job was not started because of some

exception. User can drill into the Driver logs to look

at the stack trace of the exception.

Prints: Any print statements as part of the DAG

shows up in the logs too.

Executor logs

Executor logs are sometimes helpful if user would like to see

the logs for specific tasks. From the task details page, user

can get the executor where the task was run. Once user

has executor name, user can go to the clusters UI page,

click the nodes, and then the master. The master page lists

all the workers. User can choose the worker where the

suspicious task was run and then get to the log4j output.

Handling large queries in interactive workflows

A challenge with interactive data workflows is handling large

queries. These queries can be extremely slow, saturate

cluster resources, and make it difficult for others to share

the same cluster.

Query Watchdog is a process that prevents queries from

monopolizing cluster resources by examining the most

common causes of large queries and terminating queries

that pass a threshold.

To enable Query Watchdog, set the following property:

spark.conf.set("spark.databricks.queryWatchdog.enabled", true)

To a prevent a query from creating too many output rows for

the number of input rows, user can configure the maximum

number of output rows as a multiple of the number of input

rows. In this example shown below user use a ratio of 1000

(the default).

spark.conf.set("spark.databricks.queryWatchdog.outputRatioThreshold", 1000L)

The above configuration declares that any given task should

never produce more than 1000 times the number of input

rows.

Query Watchdog also saves time by fast failing a query that

would have never completed. This is achieved through

minTimeSecs & minOutputRows properties. minTimeSecs

specifies the minimum time a given task in a query must

run before cancelling it. minOutputRows specifies the

minimum number of output rows for a task in that query.

User can set minTimeSecs to a higher value if user wants to

give it a chance to produce a large number of rows per task.

User can set spark.databricks.queryWatchdog.minOutputRows to ten

million if user wants to stop a query only after a task in that

query has produced ten million rows. This is set through as

shown below:

spark.conf.set("spark.databricks.queryWatchdog.minTimeSecs", 10L)

spark.conf.set("spark.databricks.queryWatchdog.minOutputRows", 100000L)

Query Watchdog should be enabled for ad hoc analytics

clusters where SQL analysts and data scientists are sharing

a given cluster and an administrator needs to make sure

that queries “play nicely” with one another. It is

recommended to disable Query Watchdog for all but ad hoc

analytics clusters.

Databricks notebooks
Notebook is a common tool for developing code and

presenting results. It is primary tool for creating data

engineering workflows and collaborating with colleagues.

Databricks notebooks provide real-time co-authoring in

multiple languages, automatic versioning, and built-in data

visualizations.

Create a Notebook

User can create a new notebook in any folder (for example,

in the Shared folder) following these steps:

In the sidebar, click Workspace.

Right-click on the name of any folder and

select Create > Notebook. A blank notebook opens

in the workspace.

To change the title of an open notebook, click the title and

edit inline or click File > Rename.

To view notebooks attached to a cluster, click on

Notebooks tab on the cluster details page. The tab also

displays the status of the notebook, along with the last time

a command was run from the notebook.

Develop code in Databricks notebooks

Code or SQL statements are written in a notebook cell. Use

Ctrl+Shift+Enter to execute the code of cell. If user wants to

run only the part of the code in cell, select that piece of

code and use Ctrl+Shift+Enter to run the selected text.

Version history

Azure Databricks notebooks maintain a history of notebook

versions, allowing user to view and restore previous

snapshots of the notebook. User can perform the following

actions on versions: add comments, restore and delete

versions, and clear version history.

To access notebook versions, select File > Version history.

To add a comment to the latest version, Click the version

and click on Save now. In the Save Notebook Revision

dialog, enter a comment and click on Save. The notebook

version is saved with the entered comment.

To restore a version, Click the version which user wants to

restore and click “Restore this version”. Click Confirm. The

selected version becomes the latest version of the

notebook.

To delete a version entry, Click the version that user wants

to delete and click the trash icon. Click Yes, erase and the

selected version is deleted from the history.

To clear the version history for a notebook, Select File >

Clear version history. Click Yes, clear. The notebook version

history is cleared.

Set default language

The default language for the notebook appears next to the

notebook name.

To change the default language, click the language button

and select the new language from the dropdown menu. To

ensure that existing commands continue to work,

commands of the previous default language are

automatically prefixed with a language magic command.

The language magic command format is %<language> . The

supported magic commands are: %python , %r , %scala ,

and %sql .

By default, cells use the default language of the notebook.

User can override the default language in a cell by clicking

the language button and selecting a language from the

dropdown menu.

Notebooks also support a few auxiliary magic commands:

%sh: Allows to run shell code in notebook.

%fs: Allows to use dbutils filesystem commands e.g,

to run the dbutils.fs.ls command to list files. User

can specify %fs ls instead.

%md: Allows to include various types of

documentation, including text, images, and

mathematical formulas and equations.

Link to other notebooks

User can link to other notebooks or folders using relative

paths. Specify the href attribute of an anchor tag as the

relative path, starting with a $

 Link to nested notebook</ a>

Compute resources for notebooks

User can run a notebook on a Databricks cluster, or, for SQL

commands, user also have the option to use a SQL

warehouse, a type of compute that is optimized for SQL

analytics.

To attach a notebook to a cluster, click the compute selector

in the notebook toolbar and select a cluster from the

dropdown menu. The menu shows a selection of clusters

that user have used recently or that are currently running.

To select from all available clusters, click More… . Click on

the cluster name to display a dropdown menu and select an

existing cluster.

User can also create a new cluster by selecting Create new

resource… from the dropdown menu.

To Use a notebook with a SQL warehouse, select “SQL

Warehouse” from the above image. When a notebook is

attached to a SQL warehouse, user can run SQL and

markdown cells. All other cells (Python, R, or other

languages) are ignored.

To detach a notebook from a compute resource, click the

compute selector in the notebook toolbar and hover over

the attached cluster or SQL warehouse in the list to display

a side menu. From the side menu, select Detach.

User can also detach notebooks from a cluster using

the Notebooks tab on the cluster details page. When user

detaches a notebook, the execution context is removed and

all computed variable values are cleared from the notebook.

It is recommended to detach unused notebooks from

clusters. This frees up memory space on the driver.

Schedule Notebook Job

User can create and manage notebook jobs directly in the

notebook UI. If a notebook is already assigned to one or

more jobs, user can create and manage schedules for those

jobs. If a notebook is not assigned to a job, user can create

a job and a schedule to run the notebook.

To schedule a notebook job, click Schedule button at the top

right. If no jobs exist for this notebook, the Schedule dialog

appears.

If jobs already exist for the notebook, the Jobs List dialog

appears. User can still add a schedule by clicking on “Add a

schedule” button in the Job list dialog.

In the Schedule dialog:

Select Manual to run job only when manually

triggered or scheduled to define a schedule for

running the job. If user selects scheduled , use the

dropdowns to specify the frequency, time, and time

zone.

In the Cluster drop-down, select the cluster to run

the task.

If user have Allow Cluster Creation permissions, by

default the job runs on a new job cluster. If user

does not have Allow Cluster Creation permissions,

by default the job runs on the cluster that the

notebook is attached to. If the notebook is not

attached to a cluster, user must select a cluster

from the Cluster drop-down.

Optionally, enter any Parameter to pass to the job.

Specify the key and value of each parameter.

Through notebook widget, user can capture these

parameters values in notebook.

Optionally, specify email addresses to

receive Alerts on job events.

Export and import Databricks Notebooks

Databricks can import and export notebooks in the following

formats:

Source file: A file containing only source code

statements with the extension. scala, .py, .sql, or .r.

HTML: An Azure Databricks notebook with the

extension .html.

Databricks .dbc archive.

IPython notebook: A Jupyter notebook with the

extension ipynb.

RMarkdown: An R Markdown document with the

extension Rmd.

To import a notebook.,

Click Workspace in the sidebar.

Right-click on a folder and select Import.

Specify the URL or browse to a file.

Click import.

If user chooses a single notebook, it is exported in the

current folder. If user choose a DBC or ZIP archive, its folder

structure is recreated in the current folder and each

notebook is imported.

To export a notebook, select File > Export in the notebook

toolbar and select the export format.

To export all folders in a workspace folder as a ZIP archive:

Click Workspace in the sidebar.

Right-click the folder and select Export. Select the

export format for export.

When user exports a notebook as HTML, IPython notebook

(.ipynb), or archive (DBC), and if user has not cleared the

command outputs, the outputs are included in the export.

To clear the notebook state and outputs, select one of

the Clear options at the bottom of the Run menu.

Share a notebook

To share a notebook with a co-worker, click Notebook

header share button at the top of the notebook. The

permissions dialog opens, which user can use to select who

to share the notebook with and what level of access they

have.

Databricks widgets

Input widgets allow user to add parameters to notebooks

and dashboards. Databricks widgets are best for:

Building a notebook or dashboard that is re-

executed with different parameters.

Quickly exploring results of a single query with

different parameters

There are 4 types of widgets:

text: Input a value in a text box.

dropdown: Select a value from a list of provided

values.

combobox: Combination of text and dropdown.

Select a value from a provided list or input one in

the text box.

multiselect: Select one or more values from a list of

provided values.

Running the below python command creates widgets for

each of the command.

dbutils.widgets.dropdown("state", "CA", ["CA", "IL", "MI", "NY", "OR", "VA"])

dbutils.widgets.text("database", "customers_dev")

The below image shows the widget created after execution

of the above commands.

The widget values can be retrieved using the below

command.

dbutils.widgets.get("state")

dbutils.widgets.get("database")

Run a Databricks notebook from another notebook

A notebook can be called from another notebook using %run

or dbutils.notebook.run() command.

User can use %run to modularize code, for example by

putting supporting functions in a separate notebook. When

user use %run , the called notebook is immediately executed

and the functions and variables defined in it become

available in the calling notebook.

The dbutils.notebook API is a complement to %run because

it lets user pass parameters to and return values from a

notebook. For example, user can get a list of files in a

directory and pass the names to another notebook. User can

also create if-then-else workflows based on return values or

call other notebooks using relative paths. Widget parameter

can be passed using %run, but user can’t get the return

value. Unlike %run , the dbutils.notebook.run() method starts

a new job to run the notebook.

statusval=dbutils.notebook.run("notebook-name", 60, {"argument": "data",

"argument2": "data2", ...})

In the above code, timeout value is 60 seconds. The return

value from the execution will be stored in statusval variable.

To implement this, dev should also implement exit() method

in calling notebook. The exit value will stop the further

execution and return the value of variable put in this. The

below code should be implemented in calling notebook to

return the value of status variable.

dbutils.notebook.exit("statusval")

Unit testing for notebooks

Unit testing is used to improve the quality and consistency

of notebooks’ code. Unit testing is an approach to testing

self-contained units of code, such as function. This helps to

find problems with code faster. There are a few common

approaches for organizing functions and their unit tests with

notebooks.

Store functions and their unit tests outside of notebooks.

The benefit of this approach is that user can call these

functions with and outside of notebooks. Test frameworks

are better designed to run tests outside of notebooks. The

challenge is that this approach also increases the number of

files to track and maintain.

Store functions in one notebook and their unit tests in a

separate notebook

The benefit of this approach is that these functions are

easier to reuse across notebooks. The challenge is that the

number of notebooks to track and maintain increases. These

functions cannot be used outside of notebooks.

Store functions and their unit tests within the same

notebook

The benefit of this approach is that functions and their unit

tests are stored within a single notebook for easier tracking

and maintenance. The challenge is that these functions can

be more difficult to reuse across notebooks. These functions

cannot be used outside of notebooks.

For Python and R notebooks, Databricks recommends

storing functions and their unit tests outside of notebooks.

For Scala notebooks, Databricks recommends including

functions in one notebook and their unit tests in a separate

notebook.

For SQL notebooks, Databricks recommends that user stores

functions as SQL user-defined functions (SQL UDFs) in

schemas (databases). User can then call these SQL UDFs

and their unit tests from SQL notebooks.

Sample unit test functions be:

Whether a table exists in a database.

Whether a column exists in a table.

How many rows exist in a column for a value within

that column.

To get the best unit testing results, a function should return

a single predictable outcome and be of a single data type.

The below function returns how many rows exists in a

column.

def numRowsInColumnForValue(dataFrame, columnName, columnValue):

 df = dataFrame.filter(col(columnName) == columnValue)

 return df.count()

User can create test function to test this feature. In the test

notebook, pytest library must be installed and using the

below code, this functionality can be tested. The df,

columnName and columnValue variables value should be

defined in notebook before call the below function.

import pytest

def test_numRowsInColumnForValue():

 assert numRowsInColumnForValue(df, columnName, columnValue) > 0

pytest looks for .py files whose names start with test_ (or

end with _test) to test. Similarly, by default, pytest looks

inside of these files for functions whose names start

with test_ to test. So, the test notebook name should start

with test_ or end with _test. The function inside the

notebook should start with test_.

To install pytest, run the below command at first cell of

notebook.

%pip install pytest

Databricks Workflows
Databricks Workflows orchestrates data processing,

machine learning, and analytics pipelines in the Azure

Databricks Lakehouse Platform. Workflows has fully

managed orchestration services integrated with the Azure

Databricks platform, including Databricks Jobs to run non-

interactive code in Databricks workspace and Delta Live

Tables to build reliable and maintainable ETL pipelines.

Workflow is orchestrated by an Databricks job.

Databricks Jobs

An Databricks job is a way to run data processing and

analysis applications. Job can consist of a single task or can

be a large, multi-task workflow with complex dependencies.

Databricks manages the task orchestration, cluster

management, monitoring, and error reporting for jobs. User

can run jobs immediately, periodically through an easy-to-

use scheduling system, whenever new files arrive in an

external location, or continuously to ensure an instance of

the job is always running. Jobs can be run interactively in

the notebook UI. User can create and run a job using the

Jobs UI, the Databricks CLI, or by invoking the Jobs API.

A job is composed of one or more tasks. Job tasks can be

created that run notebooks, JARS, Delta Live Tables

pipelines, or Python, Scala, Spark submit, and Java

applications. Job tasks can also orchestrate Databricks SQL

queries, alerts and dashboards to create analyses and

visualizations.

User can also add a task to a job that runs a different job.

This feature allows to break a large process into multiple

smaller jobs or create generalized modules that can be

reused by multiple jobs. User can control the execution

order of tasks by specifying dependencies between the

tasks. User can configure tasks to run in sequence or

parallel.

Databricks clusters and SQL warehouses provide the

computation resources for jobs. User can run jobs with a job

cluster, an all-purpose cluster, or a SQL warehouse.

A job cluster is a dedicated cluster for job or

individual job tasks. A job can use a job cluster

that’s shared by all tasks, or user can configure a

cluster for individual tasks when user creates or

edits a task. A job cluster is created when the job or

task starts and is terminated when the job or task

ends.

An all-purpose cluster is a shared cluster that is

manually started and terminated and can be shared

by multiple users and jobs.

To optimize resource usage, Databricks recommends using a

job cluster for jobs. To reduce the time spent waiting for

cluster startup, consider using an all-purpose cluster.

Databricks Jobs and Delta Live Tables

Delta Live Tables is a framework that simplifies ETL and

streaming data processing. Delta Live Tables provides

efficient ingestion of data with built-in support for Auto

Loader, SQL and Python interfaces. User defines the

transformations to perform on data, and Delta Live Tables

manages task orchestration, cluster management,

monitoring, data quality, and error handling.

Databricks Jobs and Delta Live Tables provide a

comprehensive framework for building and deploying end-

to-end data processing and analysis workflows. Use Delta

Live Tables for all ingestion and transformation of data. Use

Databricks Jobs to orchestrate workloads composed of a

single task or multiple data processing and analysis tasks in

the Lakehouse platform, including Delta Live Tables

ingestion and transformation.

As a workflow orchestration system, Databricks Jobs

supports:

Running jobs on a triggered basis, for example,

running a workflow on a schedule.

Data analysis through SQL queries, machine

learning and data analysis with notebooks, scripts,

or external libraries, and so forth.

Running a job composed of a single task, for

example, running an Apache Spark job packaged in

a JAR.

Create & Run Job

To create a Job, Click Workflows in the sidebar and

click “Create Job”. The Tasks tab appears with the create

task dialog.

Enter a name for the task in the Task name field.

In the Type dropdown menu, select the type of task

to run. The type of task can be notebook, python

script, python wheel, jar, delta live table pipeline

etc.

Select the Source which indicate whether it is

workspace or Git provider for file selection.

Configure the cluster where the task runs. In

the Cluster dropdown menu, select either New job

cluster or Existing All-Purpose Clusters.

To add dependent libraries, click + Add next

to Dependent libraries. Dependent libraries will be

installed on the cluster before the task runs.

To pass parameters, click on Add and provide

parameters.

To optionally receive notifications for task start,

success, or failure, click + Add next to Emails.

To optionally configure a retry policy for the task,

click + Add next to Retries.

To optionally configure an expected duration or a

timeout for the task, click + Add next to Duration

threshold.

Click on Create to create task.

To add another task, click + icon in the DAG view.

To run the job immediately, click “Run Now” button.

User can use Run Now with Different Parameters to re-run a

job with different parameters or different values for existing

parameters.

Click next to Run Now and select Run Now with

Different Parameters. Enter the new parameters depending

on the type of task and then click Run.

Notebook: User can enter parameters as key-value

pairs or a JSON object. The provided parameters are

merged with the default parameters for the

triggered run. User can use this dialog to set the

values of widgets .

JAR and spark-submit: User can enter a list of

parameters or a JSON document.

Run a job as a service principal

By default, jobs run as the identity of the job owner. This

means that the job assumes the permissions of the job

owner. The job can only access data and Databricks objects

that the job owner has permissions to access. User can

change the identity that the job is running as to a service

principal. Then, the job assumes the permissions of that

service principal instead of the owner.

To change the Run as setting user should have either Can

Manage or Is Owner permission on the job. To change the

run as field, do the following:

In the sidebar, click Workflows.

In the Name column, click the job name.

In the Job details side panel, click the pencil icon

next to the Run as field.

Search for and select the service principal.

Click Save.

User can use a schedule to automatically run Databricks job

at specified times and periods. To do this, select the Job,

click it. Click Add trigger in the Job details panel and select

Scheduled in Trigger type. To run continuous job,

select Continuous in Trigger type.

To Trigger jobs when new files arrive, select File arrival in

Trigger type. In Storage location, enter the URL of the

external location or a subdirectory of the external location to

monitor.

View and manage job runs

To view the list of jobs user has access to, click Workflows in

the sidebar. The Jobs tab in the Workflows UI lists

information about all available jobs, such as the creator of

the job, the trigger for the job, if any, and the result of the

last run.

User can view a list of currently running and recently

completed runs for all jobs use has access to, including runs

started by external orchestration tools such as Apache

Airflow or Azure Data Factory. To view the list of recent job

runs:

Click Workflows in the sidebar.

In the Name column, click a job name. The Runs tab

appears with matrix and list views of active and

completed runs.

The matrix view shows a history of runs for the job,

including each job task. Some of the information displayed

by runs list view are:

The start time for the run.

Whether the run was triggered by a job schedule or

an API request, or was manually started.

The status of the run like Pending, Running,

Skipped, Succeeded, Failed, Terminating etc.

Click to stop an active run or delete a

completed run.

Azure Databricks maintains a history of job runs for up to 60

days. If user needs to preserve job runs, Databricks

recommends exporting results before they expire.

Share information between tasks in job

User can use task values to pass arbitrary parameters

between tasks in an Databricks job. Task values are passed

using the taskValues subutility in Databricks Utilities. The

taskValues subutility provides a simple API that allows tasks

to output values that can be referenced in subsequent

tasks. Each task can set and get multiple task values. Task

values can be set and retrieved in Python notebooks.

The taskValues subutility provides two

commands: dbutils.jobs.taskValues.set() to set a variable

and dbutils.jobs.taskValues.get() to retrieve a

value. Suppose there are two notebook tasks:

 Get_user_data and Analyze_user_data and want to pass

user’s name and age from the Get_user_data task to

Analyze_user_data task. So, the below code should be

executed in databrick notebook in the Get_user_data

notebook.

dbutils.jobs.taskValues.set(key = 'name', value = 'Some

User')

dbutils.jobs.taskValues.set(key = "age", value = 30)

Key is the task value and value is the value for this task

value’s key. The below code gets the values in second

notebook.

dbutils.jobs.taskValues.get(taskKey = "Get_user_data", key

= "age", default = 42, debugValue = 0)

dbutils.jobs.taskValues.get(taskKey = "Get_user_data", key

= "name", default = "Jane Doe")

Here taskKey is the name of the job task setting the value. If

the command cannot find this task, a ValueError is raised.

Pass context about job runs into job tasks.

User can pass the context about a job run, such as the run

ID or the job’s start time. The below templated variables

into a job task will pass Job Id. This variable should be

passed as part of the task’s parameters.

{

 "MyJobID": "{{job_id}}"

}

Run tasks conditionally in an Databricks job

User can configure tasks in an Databricks job to only run

when specific conditions are met. User can use the Run

if condition to run a task even when some or all its

dependencies have failed, allowing job to recover from

failures and continue running.

User can configure a Run if condition when user edits a task

with one or more dependencies. To add the condition to the

task, select the condition from the Run if dropdown menu in

the task configuration. The Run if condition is evaluated

after all task dependencies have been completed. User can

also add a Run if condition when user adds a new task with

one or more dependencies.

User can add the following Run if conditions to a task:

All succeeded: All dependencies have run and

succeeded. This is the default condition to run a

task. The task is marked as failed if the condition is

not met.

At least one succeeded: At least one dependency

has succeeded. The task is marked as failed if the

condition is not met.

None failed: None of the dependencies failed, and

at least one dependency was run. The task is

marked as failed if the condition is not met.

All done: All dependencies have completed.

At least one failed: At least one dependency failed.

The task is marked as Excluded if the condition is

not met.

All failed: All dependencies have failed. The task is

marked as Excluded if the condition is not met.

Databricks Jobs determines whether a job run was

successful based on the outcome of the job’s leaf tasks. A

leaf task is a task that has no downstream dependencies. A

job run can have one of three outcomes:

Succeeded: All tasks were successful.

Succeeded with failures: Some tasks failed, but all

leaf tasks were successful.

Failed: One or more leaf tasks failed.

Failures handled for continuous jobs

Databricks Jobs uses an exponential backoff scheme to

manage continuous jobs with multiple consecutive failures.

Exponential backoff allows continuous jobs to run without

pausing and return to a healthy state when recoverable

failures occur.

When a continuous job exceeds the allowable threshold for

consecutive failures, the following describes how

subsequent job runs are managed:

The job is restarted after a retry period set by the

system.

If the next job run fails, the retry period is

increased, and the job is restarted after this new

retry period.

For each subsequent job run failure, the

retry period is increased again, up to a

maximum retry period set by the

system. There is no limit on the number of

retries.

If the job run completes successfully and

starts a new run, or if the run exceeds a

threshold without failure, the job is

considered healthy, and the backoff

sequence resets.

Storage
Databricks uses a shared responsibility model to create,

configure, and access block storage volumes and object

storage locations in user’s cloud account. Loading data to or

saving data with Databricks results in files stored in either

cloud block storage or object storage.

Cloud Object storage or blob storage refers to storage

containers that maintain data as objects. Some object

storage offerings include features like versioning and

lifecycle management. Object storage has the following

benefits:

High availability, durability, and reliability.

Lower cost for storage compared to most other

storage options.

Infinitely scalable (limited by the total amount of

storage available in a given region of the cloud).

Most cloud-based data lakes are built on top of open-source

data formats in cloud object storage. In almost all cases, the

data files user interacts with using Apache Spark on Azure

Databricks are stored in cloud object storage.

Block storage or disk storage refer to storage volumes that

correspond to traditional hard disk drives (HDDs) or solid-

state drives (SSDs). All virtual machines (VMs) require an

attached block storage volume.

When user turn on compute resources as part of cluster,

Databricks configures and deploys VMs and attaches block

storage volumes. This block storage is used for storing

ephemeral data files for the lifetime of the compute. These

files include the operating system and installed libraries.

While Apache Spark uses block storage in the background

for efficient parallelization and data loading, most code run

on Databricks does not directly save or load data to block

storage. The data is mostly saved to cloud object storage.

Databrick can connect to cloud storage e.g. Azure Data Lake

Storage Gen2 using Unity Catalog external locations and

Azure managed identities. User can also set Spark

properties to configure an Azure credentials to access Azure

storage.

Connect to Azure Data Lake Storage Gen2 with Unity

Catalog

Unity Catalog supports Azure Data Lake Storage Gen2.

External locations and storage credentials allow Unity

Catalog to read and write data in Azure Data Lake Storage

Gen2. A storage credential is used for authentication to

Azure Data Lake Storage Gen2. It can be either an Azure

managed identity or a service principal. Databricks

recommends using an Azure managed identity. An external

location is an object that combines a cloud storage path

with a storage credential.

The Databricks user who creates the external location in

Unity Catalog must be a metastore admin or a user with

the CREATE EXTERNAL LOCATION privilege.

After user creates an external location in Unity Catalog, user

can grant the following permissions on it:

CREATE TABLE

READ FILES

WRITE FILES

These permissions enable Azure Databricks users to access

data in Azure Data Lake Storage Gen2. Use the fully

qualified ABFS URI to access data secured with Unity

Catalog.

To access the external location, user can use the ABFS path:

-

dbutils.fs.ls("abfss://container@storageAccount.dfs.core.windows.net/external-

location/path/to/data")

To read the file from the external location:

spark.read.format("parquet").load("abfss://container@storageAccount.dfs.core.w

indows.net/external-location/path/to/data")

To Save the file to this external location:

df.write.format("parquet").save("abfss://container@storageAccount.dfs.core.win

dows.net/external-location/path/to/new-location")

To create table in unity catalog:

CREATE TABLE <catalog>.<schema>.<table-name>

(

 <column-specification>

)

LOCATION 'abfss://<bucket-path>/<table-directory>'

The above SQL code will create the table in unity catalog

which points to external location.

Connect to Blob Storage

The following credentials can be used to access Azure Data

Lake Storage Gen2 or Blob Storage.

OAuth 2.0 with an Azure service

principal: Databricks recommends using Azure

service principals to connect to Azure storage. User

can set Spark properties to configure Azure

credentials to access Azure storage.

service_credential = dbutils.secrets.get(scope="<secret-scope>",key="

<service-credential-key>")

spark.conf.set("fs.azure.account.auth.type.<storage-

account>.dfs.core.windows.net", "OAuth")

spark.conf.set("fs.azure.account.oauth.provider.type.<storage-

account>.dfs.core.windows.net",

"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider")

spark.conf.set("fs.azure.account.oauth2.client.id.<storage-

account>.dfs.core.windows.net", "<application-id>")

spark.conf.set("fs.azure.account.oauth2.client.secret.<storage-

account>.dfs.core.windows.net", service_credential)

spark.conf.set("fs.azure.account.oauth2.client.endpoint.<storage-

account>.dfs.core.windows.net",

"https://login.microsoftonline.com/<directory-id>/oauth2/token")

Replace

<secret-scope> with the Databricks secret

scope name.

<service-credential-key> with the name of the

key containing the client secret.

<storage-account> with the name of the Azure

storage account.

<application-id> with the Application (client)

ID for the Azure Active Directory application.

<directory-id> with the Directory (tenant) ID for

the Azure Active Directory application.

Shared access signatures (SAS): User can use

storage SAS tokens to access Azure storage. With

SAS, user can restrict access to a storage account

using temporary tokens with fine-grained access

control.

spark.conf.set("fs.azure.account.auth.type.<storage-

account>.dfs.core.windows.net", "SAS")

spark.conf.set("fs.azure.sas.token.provider.type.<storage-

account>.dfs.core.windows.net",

"org.apache.hadoop.fs.azurebfs.sas.FixedSASTokenProvider")

spark.conf.set("fs.azure.sas.fixed.token.<storage-

account>.dfs.core.windows.net", dbutils.secrets.get(scope="<scope>",

key="<sas-token-key>"))

Replace

<storage-account> with the Azure Storage

account name.

<scope> with the Azure Databricks secret scope

name.

<sas-token-key> with the name of the key

containing the Azure storage SAS token.

Account keys: User can use storage account access

keys to manage access to Azure Storage. Storage

account access keys provide full access to the

configuration of a storage account, as well as the

data.

spark.conf.set(

 "fs.azure.account.key.<storage-account>.dfs.core.windows.net",

 dbutils.secrets.get(scope="<scope>", key="<storage-account-access-

key>"))

Replace

< storage-account> with the Azure Storage

account name.

<scope> with the Azure Databricks secret scope

name.

<storage-account-access-key> with the name of

the key containing the Azure storage account

access key.

Once User has properly configured credentials to access

Azure storage container, user can interact with resources in

the storage account using URIs. Databricks recommends

using the abfss driver for greater security.

spark.read.load("abfss://<container-name>@<storage-account-

name>.dfs.core.windows.net/<path-to-data>

Using SQL to load a csv file:

CREATE TABLE <database-name>.<table-name>;

COPY INTO <database-name>.<table-name>

FROM 'abfss://container@storageAccount.dfs.core.windows.net/path/to/folder'

FILEFORMAT = CSV

COPY_OPTIONS ('mergeSchema' = 'true');

Databricks recommends using an Azure service principal or

a SAS token to connect to Azure storage instead of account

keys. Databricks recommends using secret scopes for

storing all credentials. User can grant users, service

principals, and groups in workspace access to read the

secret scope. This protects the Azure credentials while

allowing users to access Azure storage.

Libraries
To make third-party or custom code available to notebooks

and jobs running on clusters, user needs to install relevant

library. Libraries can be written in Python, Java, Scala, and R.

User can perform library tasks through Workspace UI, CLI or

Libraries API.

User can install libraries in three modes: cluster-installed,

notebook-scoped, and workspace.

Cluster libraries: Cluster libraries can be used by

all notebooks running on a cluster. User can

install a cluster library directly from the following

sources:

A public repository such as PyPI, Maven,

or CRAN.

A cloud object storage location.

A workspace library in the DBFS root.

Uploading library files from local machine.

Notebook-scoped libraries: Notebook-scoped

libraries, available for Python and R, allow to

install libraries and create an environment

scoped to a notebook session. These libraries do

not affect other notebooks running on the same

cluster. Notebook scoped libraries do not persist

and must be re-installed for each session.

Workspace libraries: Workspace libraries serve as a

local repository from which user can create cluster-

installed libraries. A workspace library might be

custom code created by user’s organization or might

be a particular version of an open-source library that

user’s organization has standardized on.

Workspace libraries

Workspace libraries serve as a local repository from which

user creates cluster-installed libraries. A workspace library

might be custom code created by user’s organization or

might be a particular version of an open-source library that

user’s organization has standardized on.

To create workspace library:

Right-click the workspace folder where user

wants to store the library.

Select Create > Library . The Create Library

dialog appears.

Select the Library Source and select Library type

to install the library. The following are the library

source options:

Upload a library

Reference an uploaded library

PyPI package

Maven package

CRAN package

Workspace libraries in the Shared folder are available to all

users in a workspace, while workspace libraries in a user

folder are available only to that user.

Upload a Jar, Python egg, or Python wheel

In the Library Source button list, select Upload.

Select Jar, Python Egg, or Python Whl.

Optionally enter a library name.

Drag Jar, Egg, or Whl to the drop box or click the

drop box and navigate to a file. The file is

uploaded to dbfs:/FileStore/jars.

Click Create. The library status screen displays.

Reference an uploaded jar, Python egg, or Python

wheel

User can create a new workspace library by referencing jar,

egg, or wheel files stored in the DBFS root, on object

storage, or with workspace files.

1. Select DBFS/ADLS in the Library Source button list.

2. Select Jar, Python Egg, or Python Whl.

3. Optionally enter a library name.

4. Specify the path to the library.

5. Click Create. The library status screen displays.

Install a workspace library onto a cluster

User must install a workspace library on a cluster before it

can be used in a notebook or job.

To install workspace library:

In the sidebar, click Compute.

Click a cluster name.

Click the Libraries tab.

Click Install New.

In the Library Source button list,

select Workspace Library.

Select a workspace library.

Click Install.

Move a workspace library

Workspace folders provide convenience for discovering

workspace libraries and managing ACLs. Moving a

workspace library does not move files but can modify which

users have access to the workspace library.

Go to the workspace folder containing the library.

Right-click the library name and select Move. A

folder browser displays.

Click the destination folder.

Click Move.

Delete a workspace library

Before deleting a workspace library, user should uninstall it

from all clusters. To delete a workspace library:

Move the library to the Trash folder.

Either permanently delete the library in the Trash

folder or empty the Trash folder.

Cluster libraries

Cluster libraries can be used by all notebooks running on a

cluster. In this, user should install a library for use with a

specific cluster. When user install a library on a cluster, a

notebook already attached to that cluster will not

immediately see the new library. User must first detach and

then reattach the notebook to the cluster.

To install a library on a cluster:

Click Compute in the sidebar.

Click a cluster name.

Click the Libraries tab.

Click Install New.

The Install library dialog displays.

Select one of the Library Source options, complete

the instructions that appear, and then click Install.

Install libraries from a package repository

Azure Databricks provides tools to install libraries from PyPI,

Maven, and CRAN package repositories.

For pyPI package installation, select PyPI in Library

Source button list. Enter a PyPI package name. To install a

specific version of a library, use this format for the library:

<library>==<version> For example, scikit-learn==0.19.1 .

Install libraries from object storage

User can store custom JAR and Python Whl libraries in cloud

object storage and install these libraries in cluster. User

installing the library should have appropriate permissions to

object storage. It is recommended to configure all privileges

related to library installation with read-only permissions.

Databricks recommends using Azure service principals to

manage access to libraries stored in Azure Data Lake

Storage Gen2. To install a library stored in cloud object

storage to a cluster, complete the following steps:

Select a cluster from the list in the clusters UI.

Select the Libraries tab.

Select the DBFS/ADLS option.

Provide the full URI path to the library object (for

example, abfss://container-name@storage-account-

name.dfs.core.windows.net/path/to/library.whl).

Click Install.

User can use %pip to install custom Python wheels stored in

object storage scoped to a notebook isolated

SparkSession. To use this method, user must either store

libraries in publicly readable object storage or use a pre-

signed URL. Jar libraries cannot be installed in the notebook.

User must install Jar libraries at the cluster level.

Databricks Repos
Databricks Repos is a visual Git client and API in Azure

Databricks. Databricks Repos provides source control for

projects by integrating with Git providers.

In Databricks Repos, user can use Git functionality to:

Clone, push to, and pull from a remote Git

repository.

Create and manage branches for development

work, including merging, rebasing, and resolving

conflicts.

Create notebooks and edit notebooks and other

files.

Visually compare differences upon commit.

Databricks supports the following Git providers:

GitHub and GitHub AE

Bitbucket Cloud

GitLab

Azure DevOps

Databricks Repos also supports Bitbucket Server, GitHub

Enterprise Server, and GitLab self-managed integration, if

the server is internet accessible.

Databricks Repos use a personal access token (PAT) or an

equivalent credential to authenticate with the Git provider.

To use Repos, user first need to add Git PAT and Git provider

username to Databricks.

To modify a public remote repository, or to clone or modify a

private remote repository, user must have a Git provider

username and personal access token with read and write

permissions for the remote repository.

Connect to a GitHub repo using a personal access

token

In GitHub, follow these steps to create a personal access

token that allows access to the repositories:

Login to GitHub portal

In the upper-right corner of any page, click the

profile photo, then click Settings.

Click Developer settings shown the left side items.

Click the Personal access tokens tab.

Click the Generate new token button.

Enter a token description.

Select the repo scope and workflow scope and click

the Generate token button. Workflow scope is

needed in case the repository has GitHub Action

workflows.

Copy the token to clipboard. This token will be used

in Databrick for connecting to Git.

Add or edit Git credentials in Databricks

Open Databrick workspace

Select the down arrow next to the account name at

the top right of screen, and then select User

Settings .

Select the Git Integration tab.

In the Git provider drop-down, select the provider’s

name.

In the box provided, add Git user name or email.

In the Token box, add a personal access token

(PAT) or other credentials from Git provider (as done

in the previous section)

Databrick connection of Azure Devops, GitLab,

Bitbucket can be done in similar way.

Git operation with repos

User can perform many Git operations with Databricks

Repos.

Add a repo and connect remotely later

User can create a new repo in Databricks and add the

remote Git repository URL later.

To create a new repo not linked to a remote Git

repository, click the Add Repo button. User can

access Repo button through:

Workspace → Repo → Right click on the user’s mail

id → Create → Repo.

Deselect Create repo by cloning a Git repository, enter

a name for the repo, and then click Create Repo.

When user is ready to add the Git repository URL,

click the down arrow next to the repo name in the

workspace to open the Repo menu, and

select Git… to open the Git dialog.

In the Git repo URL field, enter the URL for the

remote repository and select the Git provider from

the drop-down menu. Click Save.

Clone a repo connected to a remote repo

In the sidebar, select Workspace > Repos.

Click Add Repo.

In the Add Repo dialog, select Create repo by

cloning a Git repository and enter the repository

URL

Select Git provider from the drop-down menu,

optionally change the name to use for the

Databricks repo, and click Create Repo. The

contents of the remote repository are cloned to the

Databricks repo.

Access the Git dialog

User can access the Git dialog from a notebook or from the

Databricks Repos browser.

From a notebook, click the button next to the name

of the notebook that identifies the current Git

branch.

From the Databricks Repos browser, click the button

to the right of the repo name. User can also right-

click the repo name and select Git… from the menu.

To pull changes from the remote Git repository,

click Pull button in the Git dialog. Notebooks and

other files are updated automatically to the latest

version in remote repository.

Rebase a branch on another branch

To rebase a branch on another branch:

From the Branch menu in the Repos UI, select the

branch user wants to rebase.

Select Rebase from the menu as shown below.

Select the branch to which user wants to rebase on.

The rebase operation integrates changes from the

branch user chooses here into the current branch.

Databricks File System

(DBFS)
The Databricks File System (DBFS) is a distributed file

system mounted into an Databricks workspace and

available on Databricks clusters.

DBFS provides convenience by mapping cloud object

storage URIs to relative paths.

Allows user to interact with object storage using

directory and file semantics instead of cloud-

specific API commands.

Allows user to mount cloud object storage locations.

It simplifies the process of persisting files to object

storage, allowing virtual machines and attached

volume storage to be safely deleted on cluster

termination.

It provides a convenient location for storing init

scripts, JARs, libraries, and configurations for cluster

initialization.

It provides a convenient location for checkpoint files

created during model training.

Interact with files in cloud-based object storage

DBFS provides many options for interacting with files in

cloud object storage:

How to work with files on Azure Databricks

List, move, copy, and delete files with Databricks

Utilities

Browse files in DBFS

Upload files to DBFS with the UI

Interact with DBFS files using the Databricks CLI

Interact with DBFS files using the Databricks REST

API

Mount object storage

Mounting object storage to DBFS allows users to access

objects in object storage as if they were on the local file

system. Mounted data does not work with Unity Catalog.

Databricks recommends migrating away from using mounts.

Databricks mounts create a link between a workspace and

cloud object storage, which enables user to interact with

cloud object storage. Mounts work by creating a local alias

under the /mnt directory that stores the following

information:

Location of the cloud object storage.

Driver specifications to connect to the storage

account or container.

Security credentials required to access the data.

The syntax for mounting is:

dbutils.fs.mount(

 source: str,

 mount_point: str,

 encryption_type: Optional[str] = "",

 extra_configs: Optional[dict[str:str]] = None)

The source specifies the URI of the object storage. The

mount_point specifies the local path in the /mnt directory.

Some object storage sources support an optional

encryption_type argument. For some access patterns, user

can pass additional configuration specifications as a

dictionary to extra_configs. Running the following code

create a mount point.

configs = {"fs.azure.account.auth.type": "OAuth",

 "fs.azure.account.oauth.provider.type":

"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider",

 "fs.azure.account.oauth2.client.id": "<application-id>",

 "fs.azure.account.oauth2.client.secret": dbutils.secrets.get(scope="

<scope-name>",key="<service-credential-key-name>"),

 "fs.azure.account.oauth2.client.endpoint":

"https://login.microsoftonline.com/<directory-id>/oauth2/token"}

dbutils.fs.mount(

 source = "abfss://<container-name>@<storage-account-

name>.dfs.core.windows.net/",

 mount_point = "/mnt/<mount-name>",

 extra_configs = configs)

<application-id> with the Application (client) ID for

the Azure Active Directory application.

<scope-name> with the Databricks secret scope

name.

<service-credential-key-name> with the name of the

key containing the client secret.

<directory-id> with the Directory (tenant) ID for the

Azure Active Directory application.

<container-name> with the name of a container in

the ADLS Gen2 storage account.

<storage-account-name> with the ADLS Gen2

storage account name.

<mount-name> with the name of the intended mount

point in DBFS.

To unmount a mount point, use the following command:

dbutils.fs.unmount("/mnt/<mount-name>")

DBFS root

The DBFS root is the default storage location for an

Databricks workspace, provisioned as part of workspace

creation in the cloud account containing the Databricks

workspace.

DBFS is a file system used for interacting with data in cloud

object storage, but the DBFS root is a cloud object storage

location. DBFS is used to interact with the DBFS root, but

they are distinct concepts, and DBFS has many applications

beyond the DBFS root.

DBFS work with Unity Catalog

Unity Catalog introduces a number of new configurations

and concepts that approach data governance entirely

differently than DBFS.

Databricks recommends against using DBFS and mounted

cloud object storage for most use cases in Unity Catalog-

enabled Databricks workspaces. In some scenarios, user

should use mounted cloud object storage.

The DBFS root is the default location for storing files

associated with a number of actions performed in the Azure

Databricks workspace, including creating managed tables in

the workspace-scoped hive_metastore.

Clusters configured with Single User access mode have full

access to DBFS, including all files in the DBFS root

and mounted data. DBFS root and mounts are available in

this access mode, making it the choice for ML workloads

that need access to Unity Catalog datasets.

Databricks recommends using service principals with

scheduled jobs and Single User access mode for production

workloads that need access to data managed by both DBFS

and Unity Catalog.

Shared access mode combines Unity Catalog data

governance with Azure Databricks legacy table ACLs. Access

to data in the hive_metastore is only available to users that

have permissions explicitly granted.

Each Unity Catalog metastore has an object storage account

configured by an Azure Databricks account administrator.

Unity Catalog uses this location to store all data and

metadata for Unity Catalog-managed tables.

It is possible to load existing storage accounts into Unity

Catalog using external locations. For greatest security,

Databricks recommends only loading storage accounts to

external locations if all other storage credentials and access

patterns have been revoked.

User should never load a storage account used as a DBFS

root as an external location in Unity Catalog.

Default Location

Each Databricks workspace has several directories

configured in the DBFS root storage container by default.

Some of these directory’s link to locations on the DBFS root,

while others are virtual mounts.

/Filestore: Data and libraries uploaded through the

Azure Databricks UI go to the /Filestore location by

default.

/databricks-datasets: Databricks provides a number of

open source datasets in this directory

/databricks-results: /databricks-results stores files

generated by downloading the full results of a query

/databricks/init: This directory contains legacy global

init scripts.

/user/hive/warehouse: Azure Databricks stores

managed tables in the hive_metastore here by

default.

FileStore

FileStore is a special folder within DBFS where user can

save files and have them accessible to web browser. User

can use FileStore to:

Save files, such as images and libraries.

Save output files that user wants to download to local

desktop.

Upload CSVs and other data files your local desktop to

process on Databricks.

To Save a file to FileStore, user can use dbutils.fs.put to

write arbitrary text files to the /FileStore directory in DBFS:

dbutils.fs.put("/FileStore/my-stuff/my-file.txt", "This is a sample text file")

Browse files in DBFS

User can browse and search for DBFS objects using the

DBFS file browser. A workspace admin user must enable the

DBFS browser interface before user can use it. The steps

are:

Click Data/Catalog in the sidebar.

Click the Browse DBFS button at the top of the page.

The browser displays DBFS objects.

Work with Files
User can work with files on DBFS, the local driver node of

the cluster, cloud object storage, external locations, and in

Databricks Repos. User can integrate other systems, but

many of these do not provide direct file access to

Databricks.

The DBFS root is the root path for Spark and DBFS

commands. These include:

Spark SQL

DataFrames

dbutils.fs

%fs

Access files on the DBFS root

When using commands that default to the DBFS root, user

can use the relative path or include dbfs:/. The commands

will be:

Using SQL:

SELECT * FROM parquet.`<path>`;

SELECT * FROM parquet.`dbfs:/<path>`

Using Python:

df = spark.read.load("<path>")

df.write.save("<path>")

Optimization &

Performance
Databricks provides many optimizations ranging from large-

scale ETL processing to ad-hoc, interactive queries. Many of

these optimizations take place automatically. User gets their

benefits simply by using Databricks.

Databricks configures default configuration values that

optimize most workloads. In some cases, changing

configuration settings improves performance. Use the latest

Databricks Runtime to leverage the newest performance

enhancements.

Optimize performance with caching

Databricks uses disk caching to accelerate data reads by

creating copies of remote Parquet data files in nodes’ local

storage. The data is cached automatically whenever a file

has to be fetched from a remote location. Successive reads

of the same data are then performed locally, which results

in significantly improved reading speed. Cache is of two

types:

Disk cache

Apache Spark cache

The Databricks disk cache differs from Apache Spark

caching. Databricks recommends using automatic disk

caching for most operations.

When the disk cache is enabled, data that must be fetched

from a remote source is automatically added to the

cache. This process is fully transparent and does not

require any action. To preload data into the cache

beforehand, user can use the CACHE SELECT

command. When user uses the Spark cache, user must

manually specify the tables and queries to cache.

The disk cache contains local copies of remote data. It can

improve the performance of a wide range of queries, but

cannot be used to store results of query. The Spark cache

can store the result of any query data and data stored in

formats other than Parquet (such as CSV, JSON, and ORC).

The data stored in the disk cache can be read and operated

on faster than the data in the Spark cache. This is because

the disk cache uses efficient decompression algorithms and

outputs data in the optimal format for further processing.

Disk caching does not use system memory. Due to the high

read speeds of modern SSDs, the disk cache has no

negative impact on its performance.

The following table summarizes the key differences between

disk and Apache Spark caching:

Feature disk cache Apache Spark

cache

Stored as Local files on a

worker node.

In-memory

blocks, but it

depends on

storage level.

Applied to Any Parquet table

stored on ABFS and

other file systems.

Any DataFrame

or RDD.

Triggered Automatically, on

the first read (if

cache is enabled).

Manually,

requires code

changes.

Evaluated Lazily Lazily

Availability Can be enabled or

disabled with

Always

available.

configuration flags

The disk cache automatically detects when data files are

created, deleted, modified, or overwritten and updates its

content accordingly. There is no need to explicitly invalidate

cached data. Any stale entries are automatically invalidated

and evicted from the cache.

To explicitly select a subset of data to be cached, use the

following syntax:

CACHE SELECT column_name[column_name, ...] FROM [db_name.]table_name [

WHERE boolean_expression]

The recommended way to use disk caching is to choose a

worker type with SSD volumes when user configures the

cluster. Such workers are enabled and configured for disk

caching.

Databricks recommends that user choose cache-accelerated

worker instance types for clusters. Such instances are

configured optimally for the disk cache.

Configure disk usage

To configure how the disk cache uses the worker nodes’

local storage, specify the following Spark

configuration settings during cluster creation:

spark.databricks.io.cache.maxDiskUsage: Disk

space per node reserved for cached data in bytes

spark.databricks.io.cache.maxMetaDataCache: Disk

space per node reserved for cached metadata in

bytes

spark.databricks.io.cache.compression.enabled:

Should the cached data be stored in compressed

format.

Example configuration:

spark.databricks.io.cache.maxDiskUsage 50g

spark.databricks.io.cache.maxMetaDataCache 1g

spark.databricks.io.cache.compression.enabled false

Enable or disable the disk cache.

To enable and disable the disk cache, run the following code

in scala. Disabling the cache does not result in dropping the

data that is already in the local storage. Instead, it prevents

queries from adding new data to the cache and reading data

from the cache.

spark.conf.set("spark.databricks.io.cache.enabled", "[true | false]")

Dynamic file pruning

Dynamic file pruning, can significantly improve the

performance of many queries on Delta Lake tables. Dynamic

File Pruning (DFP), a new data-skipping technique, which

can significantly improve queries with selective joins on

non-partition columns on tables in Delta Lake, now enabled

by default in Databricks Runtime.

Dynamic file pruning is controlled by the following Apache

Spark configuration options:

spark.databricks.optimizer.dynamicFilePruning:

Default is true. When set to false, dynamic file

pruning will not be in effect.

spark.databricks.optimizer.deltaTableSizeThreshold:

Default is 10,000,000,000 bytes (10 GB).

 Represents the minimum size (in bytes) of the

Delta table on the probe side of the join required to

trigger dynamic file pruning. If the probe side is not

very large, it is probably not worthwhile to push

down the filters and user can just simply scan the

whole table.

spark.databricks.optimizer.deltaTableFilesThreshold

: It represents the number of files of the Delta table

on the probe side of the join required to trigger

dynamic file pruning. When the probe side table

contains fewer files than the threshold value,

dynamic file pruning is not triggered. If a table has

only a few files, it is probably not worthwhile to

enable dynamic file pruning.

Low shuffle merge

The MERGE command is used to perform simultaneous

updates, insertions, and deletions from a Delta Lake table.

Azure Databricks has an optimized implementation

of MERGE that improves performance substantially for

common workloads by reducing the number of shuffle

operations.

Databricks low shuffle merge provides better performance

by processing unmodified rows in a separate, more

streamlined processing mode, instead of processing them

together with the modified rows. As a result, the amount of

shuffled data is reduced significantly, leading to improved

performance. In low shuffle merge, the unmodified rows are

instead processed without any shuffles, expensive

processing, or other added overhead. This provides

optimized performance.

Low shuffle merge tries to preserve the existing data layout

of the unmodified records, including Z-order optimization on

a best-effort basis. The updated or newly inserted data may

not be optimal, so it may still be necessary to run

the OPTIMIZE or OPTIMIZE ZORDER BY commands.

Low shuffle merge is enabled by default in Databricks

Runtime 10.4 and above. In earlier supported Databricks

Runtime versions it can be enabled by setting the

configuration:

spark.databricks.delta.merge.enableLowShuffle to true.

Delta Lake

Delta Lake is the optimized storage layer that provides the

foundation for storing data and tables in the Databricks

Lakehouse Platform. Delta Lake is open source software that

store data as Parquet files with a file-based transaction log

for ACID transactions.

Delta Lake is the default storage format for all operations on

Databricks. Unless otherwise specified, all tables on

Databricks are Delta tables. All tables on Databricks are

Delta tables by default. Whether user is using Apache

Spark DataFrames or SQL, user gets all the benefits of Delta

Lake just by saving data to the lakehouse with default

settings.

Delta Lake operations

Create a table

All tables created on Databricks use Delta Lake by default.

Using python:

Load the data from its source.

df = spark.read.load("/databricks-datasets/learning-spark-

v2/people/people.delta")

Write the data to a table.

table_name = "people_data"

df.write.saveAsTable(table_name)

Using SQL:

DROP TABLE IF EXISTS people_data;

CREATE TABLE IF NOT EXISTS people_data

AS SELECT * FROM delta.`/databricks-datasets/learning-spark-

v2/people/people.delta`;

The above operations create a new managed table by

using the schema that was inferred from the data. For

managed tables, Databricks determines the location for the

data.

To get the location, use the below SQL command:

DESCRIBE DETAIL people_data;

Upsert to a table

To merge a set of updates and insertions into an existing

Delta table, user can use the MERGE INTO statement. For

example, the following statement takes data from the

source table(people_updates) and merges it into the target

Delta table(people_data).

When there is a matching row in both tables, Delta Lake

updates the data column using the given expression. When

there is no matching row, Delta Lake adds a new row. This

operation is known as an upsert.

MERGE INTO people_data

USING people_updates

ON people_data.id = people_updates.id

WHEN MATCHED THEN UPDATE SET *

WHEN NOT MATCHED THEN INSERT *;

If user specifies * , this update or insert all columns in the

target table. This assumes that the source table has the

same columns as those in the target table, otherwise the

query will throw an error.

User must specify a value for every column in table while

performing an INSERT operation.

Read a table

User can access data in Delta tables by the table name or

the table path, as shown in the following examples:

df = spark.read.table(table_name)

display(df)

User can also read using the table path:

people_df = spark.read.load(table_path)

display(people_df)

Using SQL, User can read using the below code:

SELECT * FROM people_data

SELECT * FROM delta.`<path-to-table>`;

Write to a table

To atomically add new data to an existing Delta table,

use append mode

df.write.mode("append").saveAsTable("people_data")

To overwrite any existing table:

df.write.mode("overwrite").saveAsTable("people_data")

Update a table

User can update data that matches a condition in a Delta

table. For example, in a table named people_data, to

change an abbreviation in the gender column from M or F to

Male or Female, user can run the following:

Using SQL:

UPDATE people_data SET gender = 'Female' WHERE gender = 'F';

UPDATE people_data SET gender = 'Male' WHERE gender = 'M';

For a table located at a path at /tmp/delta/people-data, to

change an abbreviation in the gender column from M or F to

Male or Female, user can run the following:

UPDATE delta.`/tmp/delta/people-data` SET gender='Female' WHERE

gender='F';

UPDATE delta.`/tmp/delta/people-data` SET gender = 'Male' WHERE gender='M';

Using Python:

from delta.tables import *

from pyspark.sql.functions import *

deltaTable = DeltaTable.forPath(spark, '/tmp/delta/people-data')

deltaTable.update(

 condition = col('gender') == 'M',

 set = {'gender': lit('Male')}

)

Delete from a table

User can remove data that matches a condition from a Delta

table. For instance, in a table named people-data, to delete

all rows corresponding to people with a value in the

birthDate column from before 1955, user can use the below

code:

Using SQL:

DELETE FROM people10m WHERE birthDate < '1955-01-01'

In a table at path /tmp/delta/people-data, to delete all rows

corresponding to people with a value in

the birthDate column from before 1955, user can use the

below code:

DELETE FROM delta.`/tmp/delta/people-10m` WHERE birthDate < '1955-01-01'

Using Python:

from delta.tables import *

from pyspark.sql.functions import *

deltaTable = DeltaTable.forPath(spark, '/tmp/delta/people-data')

deltaTable.delete(col('birthDate') < '1960-01-01')

Display table history

To view the history of a table, use the DESCRIBE

HISTORY statement, which provides information, including

the table version, operation, user, and so on, for each write

to a table.

DESCRIBE HISTORY people_data

Time travel

Delta Lake time travel allows to query an older snapshot of

a Delta table. To query an older version of a table, specify a

version or timestamp in a SELECT statement. For example, to

query version 0 from the history above, use:

SELECT * FROM people_data VERSION AS OF 0

To query based on timestamp, use:

SELECT * FROM people_data TIMESTAMP AS OF '2021-02-25 00:37:58'

Using Python, the above objective can be achieved using:

df1 = spark.read.format('delta').option('timestampAsOf', '2021-02-

25').table("people_data")

df=spark.read.format('delta').option('versionAsOf',0).table("people_data")

Optimize a table

Once user has performed multiple changes to a table, user

might have a lot of small files. To improve the speed of read

queries, user can use OPTIMIZE to collapse small files into

larger ones:

OPTIMIZE people_data

Z-order by columns

To improve read performance further, user can co-locate

related information in the same set of files by Z-

Ordering. This co-locality reduces the amount of data that

needs to be read. To Z-Order data, user should specify the

columns to order on in the ZORDER BY clause. For example,

to co-locate by gender, run:

OPTIMIZE people_data

ZORDER BY (gender)

Clean up snapshots with VACUUM

To clean up old snapshots. User can do this by running

the VACUUM command:

VACUUM people_data

Delta Lake table history

Each operation that modifies a Delta Lake table creates a

new table version. User can use history information to audit

operations, rollback a table, or query a table at a specific

point in time using time travel.

User can retrieve information including the operations, user,

and timestamp for each write to a Delta table by running

the history command. Table history retention is determined

by the table setting delta.logRetentionDuration, which is 30

days by default.

Using the below SQL command, user can get the history of

the table:

DESCRIBE HISTORY eventsTable

Delta Lake time travel

Delta Lake time travel supports querying previous table

versions based on timestamp or table version. SQL

command to retrieve the data based on timestamp or

version is shown below:

SELECT * FROM people_data TIMESTAMP AS OF '2020-12-18T22:15:12.013Z'

SELECT * FROM delta.`/tmp/delta/people_data` VERSION AS OF 5

Using Python, user can achieve the same using the below

command:

df1 = spark.read.option("timestampAsOf", "2020-12-18").table("people_data")

df2 = spark.read.option("versionAsOf", 5).load("/tmp/delta/people_data")

Delta Lake records table versions as JSON files within

the _delta_log directory, which is stored alongside table

data.

To query a previous table version, user must retain both the

log and the data files for that version. The default retention

value is 7 days. Data files are deleted when VACUUM runs

against a table. To increase the data retention threshold for

Delta tables, user must configure the following table

properties:

delta.logRetentionDuration = "interval <interval>".

It controls how long the history for a table is kept.

The default is “interval 30 days”.

delta.deletedFileRetentionDuration = "interval

<interval>". It will retain the files for this interval

duration. The default is “interval 7 days”.

Restore a Delta table to an earlier state

User can restore a Delta table to its earlier state by using

the RESTORE command. A Delta table internally maintains

historic versions of the table that enable it to be restored to

an earlier state. User can restore the table to earlier version

or timestamp using the query:

RESTORE TABLE db.target_table TO VERSION AS OF <version>

RESTORE TABLE delta.`/data/target/` TO TIMESTAMP AS OF <timestamp>

Vacuum unused data files

User can remove data files no longer referenced by a Delta

table that are older than the retention threshold by running

the VACUUM command on the table.

Running VACUUM regularly helps in reducing the cloud

storage cost by deleting unused files. The syntax for running

vacuum is:

VACUUM tablename

The above command will vacuum files which are not

required by versions older than the default retention period.

VACUUM '/data/events' -- vacuum files in path-based table

VACUUM delta.`/data/events/` RETAIN 100 HOURS -- vacuum files more than

100 hours old

VACUUM eventsTable DRY RUN -- do dry run to get the list of files to be deleted

Databricks recommends regularly running VACUUM on all

tables to reduce excess cloud data storage costs. The

default retention threshold for vacuum is 7 days. It is

recommended that user sets a retention interval to be at

least 7 days, because old snapshots and uncommitted files

can still be in use by concurrent readers or writers to the

table.

Optimize Tables

Delta Lake on Azure Databricks can improve the speed of

read queries from a table. One way to improve this speed is

to coalesce small files into larger ones.

User can trigger compaction by running

the OPTIMIZE command. User can achieve this for events

table using:

--path-based table

OPTIMIZE delta.`/data/events`

OPTIMIZE events

Using Python:

from delta.tables import *

deltaTable = DeltaTable.forPath(spark, "/data/events")

deltaTable.optimize().executeCompaction()

If User has a large amount of data and only wants to

optimize a subset of it, user can specify an optional partition

predicate using WHERE :

OPTIMIZE events WHERE date >= '2020-12-18'

Using Python:

from delta.tables import *

deltaTable = DeltaTable.forName(spark, "events")

deltaTable.optimize().where("date='2020-12-18'").executeCompaction()

OPTIMIZE makes no data related changes to the table, so a

read before and after an OPTIMIZE has the same results.

When user chooses to run OPTIMIZE , there is a trade-off

between performance and cost. Running OPTIMIZE command

incur a higher cost because of the increased resource

usage. Running OPTIMIZE command is a CPU intensive

operation doing large amounts of Parquet decoding and

encoding so Databricks recommends Compute

optimized instance types for cluster.

Z-order indexes

Z-ordering is a technique to co-locate related information in

the same set of files. This co-locality is automatically used

by Delta Lake on Azure Databricks data-skipping algorithms.

This behaviour dramatically reduces the amount of data

that Delta Lake on Azure Databricks needs to read. To Z-

order data, user should specify the columns to order on in

the ZORDER BY clause:

If user expects a column to be commonly used in query

predicates and if that column has high cardinality (many

distinct values), then use ZORDER BY .

OPTIMIZE events

ZORDER BY (eventType)

User can specify multiple columns for ZORDER BY as a

comma-separated list. However, the effectiveness of the

locality drops with each extra column.

Change Data Feed

Change data feed allows Databricks to track row-level

changes between versions of a Delta table. When enabled

on a Delta table, the runtime records change events for all

the data written into the table. This includes the row data

along with metadata indicating whether the specified row

was inserted, deleted, or updated.

User can read the change events in batch queries using

Spark SQL, Apache Spark DataFrames, and Structured

Streaming.

Change data feed works in tandem with table history to

provide change information so change data feed on cloned

tables doesn’t match that of the original table. This is

because the cloned table has a separate history.

Use cases

Change data feed is not enabled by default. Some of the use

cases that improves the performance are:

Silver and Gold tables: Improve Delta Lake

performance by processing only row-level changes

to accelerate and simplify ETL and ELT operations.

Materialized views: Create up-to-date, aggregated

views of information for use in BI and analytics

without having to reprocess the full underlying

tables, instead updating only where changes have

come through.

Enable change data feed

User must explicitly enable the change data feed option

using one of the following methods:

New table: Set the table

property delta.enableChangeDataFeed = true in the CREATE

TABLE command.

CREATE TABLE student (id INT, name STRING, age INT) TBLPROPERTIES

(delta.enableChangeDataFeed = true)

Existing table: Set the table property

delta.enableChangeDataFeed = true in the ALTER TABLE

command.

ALTER TABLE myDeltaTable SET

TBLPROPERTIES(delta.enableChangeDataFeed = true)

All new tables:

set spark.databricks.delta.properties.defaults.enableChangeDataFeed =

true;

Read changes in batch queries

To read the changes, user can provide either version or

timestamp for the start and end. To read the changes from a

particular start version to the latest version of the table,

specify only the starting version or timestamp.

Using SQL:

-- capture changes from version 0 to 10

SELECT * FROM table_changes('tableName', 0, 10)

-- Capture changes between timestamps

SELECT * FROM table_changes('tableName', '2021-04-21 05:45:46', '2021-05-21

12:00:00')

-- providing only the startingVersion/timestamp. It will capture changes from this

version to latest version

SELECT * FROM table_changes('tableName', 5)

-- path based tables

SELECT * FROM table_changes_by_path('\path', '2022-08-21 05:50:46')

Using Python:

spark.read.format("delta") \

 .option("readChangeFeed", "true") \

 .option("startingVersion", 0) \

 .option("endingVersion", 10) \

 .table("myDeltaTable")

spark.read.format("delta") \

 .option("readChangeFeed", "true") \

 .option("startingTimestamp", '2021-04-21 05:45:46') \

 .option("endingTimestamp", '2021-05-21 12:00:00') \

 .table("myDeltaTable")

providing only the startingVersion/timestamp

spark.read.format("delta") \

 .option("readChangeFeed", "true") \

 .option("startingVersion", 5) \

 .table("myDeltaTable")

path based tables

spark.read.format("delta") \

 .option("readChangeFeed", "true") \

 .option("startingTimestamp", '2022-08-21 05:50:46') \

 .load("pathToMyDeltaTable")

Read changes in streaming queries

providing a starting version

spark.readStream.format("delta") \

 .option("readChangeFeed", "true") \

 .option("startingVersion", 5) \

 .table("myDeltaTable")

providing a starting timestamp

spark.readStream.format("delta") \

 .option("readChangeFeed", "true") \

 .option("startingTimestamp", "2022-06-21 05:35:43") \

 .load("/pathToMyDeltaTable")

#Not providing a starting version/timestamp will result in the latest snapshot

being fetched first

spark.readStream.format("delta") \

 .option("readChangeFeed", "true") \

 .table("myDeltaTable")

To get the change data while reading the table, set the

option readChangeFeed to true.

The startingVersion or startingTimestamp are optional and if

not provided the stream returns the latest snapshot of the

table at the time of streaming as an INSERT and future

changes as change data. When user reads from the change

data feed for a table, the schema for the latest table version

is used.

Table constraint

Databricks supports standard SQL constraint management

clauses. All constraints on Databricks require Delta Lake.

Databricks supports two types of constraint:

NOT NULL: indicates that values in specific

columns cannot be null.

CREATE TABLE people_data (

 id INT NOT NULL,

 firstName STRING,

 middleName STRING NOT NULL,

 lastName STRING,

 gender STRING,

 birthDate TIMESTAMP,

 salary INT

) USING DELTA;

CHECK: indicates that a specified boolean

expression must be true for each input row. User

can add constraint on the table.

ALTER TABLE people_data ADD CONSTRAINT dateWithinRange CHECK

(birthDate > '1900-01-01');

Upsert into a Delta Lake table using merge

User can upsert data from a source table, view, or

DataFrame into a target Delta table by using

the MERGE SQL operation. Delta Lake supports inserts,

updates, and deletes in MERGE.

Suppose user has a source table named source or a source

path that contains new data for a target table

named target or a target path. Some of these new records

may already be present in the target data. To merge the

new data, user wants to update rows where the key is

already present in target table and insert the new rows

where no matching key is present. User can run the

following query using SQL:

MERGE INTO target

USING source

ON source.key = target.key

WHEN MATCHED THEN

 UPDATE SET *

WHEN NOT MATCHED THEN

 INSERT *

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

There are three conditions in above query:

MATCHED: - The target table has some rows which

are present in source table based on key. These

rows on target table will be updated with source

rows values.

NOT MATCHED: The source table has some rows

that do not exist in the target table based on key.

These rows will be inserted in target table.

NOT MATCHED BY SOURCE: The target table has

some rows that do not exist in the source table.

These rows will be deleted from the target tables.

User needs to use this condition when user wants to

synchronize the target table with the data from the

source table.

The above code can be written in python like:

(targetDF

 .merge(sourceDF, "source.key = target.key")

 .whenMatchedUpdateAll()

 .whenNotMatchedInsertAll()

 .whenNotMatchedBySourceDelete()

 .execute()

)

In case User needs to update some fields then user can

specify the fields values as well.

MERGE INTO people_data

USING people_data_updates

ON people_data.id = people_data_updates.id

WHEN MATCHED THEN

 UPDATE SET

 firstName = people_data_updates.firstName,

 middleName = people_data_updates.middleName,

 lastName = people_data_updates.lastName

WHEN NOT MATCHED

 THEN INSERT (

 id,

 firstName,

 middleName,

 lastName

)

 VALUES (

 people_data_updates.id,

 people_data_updates.firstName,

 people_data_updates.middleName,

 people_data_updates.lastName

)

Custom Metadata

User can enrich Delta Lake tables with custom metadata.

User can use fields in the Delta Lake transaction log to add

custom tags to a table or messages for an individual

commit.

User can specify user-defined strings as metadata in

commits by using the DataFrameWriter

option userMetadata.

df.write.format("delta") \

 .mode("overwrite") \

 .option("userMetadata", "fixing-incorrect-data") \

 .save("/tmp/delta/people_data")

This user-defined metadata is readable through describe

history command.

User can store its own metadata as a table property using

TBLPROPERTIES in CREATE and ALTER.

ALTER TABLE people_data SET TBLPROPERTIES ('department' = 'accounting')

User can then display that metadata:

-- Show just the 'department' table property.

SHOW TBLPROPERTIES people_data ('department')

Generated columns

Delta Lake supports generated columns which are a special

type of column whose values are automatically generated

based on a user-specified function over other columns in the

Delta table. The column value is automatically computed

based on the user-defined function applied for the

generated column.

CREATE TABLE people_data (

 id INT,

 firstName STRING,

 middleName STRING,

 birthDate TIMESTAMP,

 yearofBirth INT GENERATED ALWAYS AS (YEAR(birthDate))

)

PARTITIONED BY yearofBirth

User can define identity columns in delta lake table. Delta

Lake identity columns are a type of generated column that

assign unique values for each record inserted to a

table. Identity columns only support the BIGINT type. User

can optionally specify a starting value and a step size.

Tables cannot be partitioned by an identity column, and user

cannot perform update operations on identity columns.

Declaring an identity column on a Delta table disables

concurrent transactions. In use cases, only use identity

columns where concurrent writes to the target table are not

required.

Idempotent writes

Sometimes a job that writes data to a Delta table is

restarted due to various reasons e.g., job encounters a

failure. The failed job may or may not have written the data

to Delta table before terminating. In the case where the

data is written again, the restarted job writes the same data

to the Delta table which results in duplicate data.

To address this, Delta tables support the

following DataFrameWriter options to make the writes

idempotent:

txnAppId: A unique string that user can pass

on each DataFrame write.

txnVersion: A monotonically increasing number that

acts as transaction version. This number needs to

be unique for data that is being written to the Delta

table(s). Any subsequent restarts of the same job

need to have the same value for txnVersion.

The above combination of options needs to be unique for

each new data that is being ingested into the Delta table

and the txnVersion needs to be higher than the last data

that was ingested into the Delta table.

app_id = # A unique string that is used as an application ID.

Version = # A monotonically increasing number that acts as transaction version.

dataFrame.write.option("txnVersion", version).option("txnAppId",

app_id).save(...)

Delta Lake schema validation

Delta Lake automatically validates that the schema of the

DataFrame being written is compatible with the schema of

the table. Delta Lake uses the following rules to determine

whether a write from a DataFrame to a table is compatible:

All DataFrame columns must exist in the target

table. If there are columns in the DataFrame not

present in the table, an exception is

raised. Columns present in the table but not in the

DataFrame are set to null.

DataFrame column data types must match the

column data types in the target table.

DataFrame columns name must be unique. Same

column name (even if it is case sensitive) can’t be

in dataframe.

Merge automatically validates that the schema of the data

generated by insert and update expressions are compatible

with the schema of the table. It uses the following rules for

compatibility:

For update and insert actions, the specified target

columns must exist in the target Delta table.

For updateAll and insertAll actions, the source

dataset must have all the columns of the target

Delta table. The source dataset can have extra

columns and they are ignored.

Selectively overwrite

Databricks leverages Delta Lake functionality to support for

selective overwrite. User can selectively overwrite only the

data that matches an arbitrary expression.

The following command replaces events in January in the

target table with the data in dataframe df which satisfies the

given condition.

df.write

 .mode("overwrite")

 .option("replaceWhere", "start_date >= '2020-01-01' AND end_date <= '2022-

01-31'")

 .save("/tmp/delta/events")

Update Schema

Delta Lake lets user update the schema of a table. The

following types of changes are supported:

Adding new columns (at arbitrary positions)

Reordering existing columns

Renaming existing columns

Partitioning Tables

Most tables with less than 1 TB of data do not require

partitions. Databricks recommends all partitions contain at

least 1 GB of data. Tables with fewer, larger partitions tend

to outperform tables with many smaller partitions.

Partitioning works well only for low or known cardinality

fields (for example, date fields or physical locations), but not

for fields with high cardinality such as timestamps.

Clone Delta Table

User can create a copy of an existing Delta Lake table on

Databricks at a specific version using the clone command.

Clones can be either deep or shallow.

Clone types

A deep clone is a clone that copies the source table data to

the clone target in addition to the metadata of the existing

table.

A shallow clone is a clone that does not copy the data to the

clone target. The table metadata is copied. Shallow clones

reference data files in the source directory of source table.

The metadata that is cloned includes: schema, partitioning

information, invariants, nullability.

In Databricks Runtime 13.1 and above, Unity Catalog

managed tables have support for shallow clones.

Any changes made to either deep or shallow clones

affect only the clones themselves and not the

source table.

Deep clones are expensive to create than Shallow

clones.

Cloning a table is not the same as Create Table As

Select or CTAS. A clone copies the metadata of the

source table in addition to the data. Cloning also

has simpler syntax. User doesn’t need to specify

partitioning, format, invariants, nullability and so on

as they are taken from the source table.

A cloned table has an independent history from its

source table. Time travel queries on a cloned table

do not work with the same inputs as they work on

its source table.

To Create Deep Clone:

CREATE TABLE delta.`/data/target/` CLONE delta.`/data/source/` -- Creates a

deep clone of /data/source at /data/target

CREATE OR REPLACE TABLE db.target_table CLONE db.source_table -- Replace

the target

CREATE TABLE IF NOT EXISTS delta.`/data/target/` CLONE db.source_table -- No-

op if the target table exists

To Create Shallow clone:

CREATE TABLE db.target_table SHALLOW CLONE delta.`/data/source`

User can clone a specific version as well:

CREATE TABLE db.target_table SHALLOW CLONE delta.`/data/source` VERSION

AS OF version

CREATE TABLE db.target_table SHALLOW CLONE delta.`/data/source` TIMESTAMP

AS OF timestamp_expression

-- timestamp can be like “2022-02-01” or like date_sub(current_date(), 1)

Using Python:

from delta.tables import *

deltaTable = DeltaTable.forPath(spark, pathToTable) # path-based tables, or

deltaTable = DeltaTable.forName(spark, tableName) # Hive metastore-

based tables

deltaTable.clone(target, isShallow, replace) # clone the source at latest version

The following permissions are required for both deep and

shallow clones:

SELECT permission on the source table.

If user is using CLONE to create a new

table, CREATE permission on the database in which

user is creating the table.

If user is using CLONE to replace a table, user must

have MODIFY permission on the table.

Any user that reads the deep clone must have read access

to the clone’s directory. To make changes to the clone, users

must have write access to the clone’s directory.

For Shallow clone, any user that reads the shallow clone

needs permission to read the files in the original table. To

make changes to the clone, users will need write access to

the clone’s directory.

Clone for data archiving

User can use deep clone to preserve the state of a table at a

certain point in time for archival purposes. User can create

deep clones to maintain an updated state of a source table

for disaster recovery.

CREATE OR REPLACE TABLE delta.`/some/archive/path` CLONE my_prod_table

Clone on Unity Catalog

User can use shallow clone to create new Unity Catalog

managed tables from existing Unity Catalog managed

tables. Shallow clone support for Unity Catalog allows user

to create tables with access control privileges independent

from their parent tables without needing to copy underlying

data files.

Create a shallow clone

The syntax to shallow clone unity catalog table is:

CREATE TABLE <catalog-name>.<schema-name>.<target-table-name>

SHALLOW CLONE <catalog-name>.<schema-name>.<source-table-name>

To create a shallow clone on Unity Catalog, user must have

sufficient privileges on both the source and target

resources. The permissions required are:

Resource Permissions required

Source table SELECT

Source schema USE SCHEMA

Source catalog USE CATALOG

Target schema USE SCHEMA, CREATE TABLE

Target catalog USE CATALOG

Query or modify a shallow cloned table

To query a shallow clone on Unity Catalog, user must have

sufficient privileges on the table and containing resources,

as detailed in the following table:

Resource Permissions required

Catalog USE CATALOG

Schema USE SCHEMA

Table SELECT

Data governance

Data governance ensures that data brings value and

supports the business strategy. Data governance

encapsulates the policies and practices to securely manage

the data assets within an organization. As the amount and

complexity of data are growing, more and more

organizations are looking at data governance to ensure the

core business outcomes. Data governance provides the

following outcomes:

Consistent and high data quality.

Reduced time to insight.

Data democratization, that is enabling everybody in

an organization to make data-driven decisions.

Support for risk and compliance for industry

regulations such as HIPAA, FedRAMP, GDPR, or

CCPA.

Cost optimization, for example by preventing users

to start up large clusters and creating guardrails for

using expensive GPU instances.

Data-driven companies typically build their data

architectures for analytics on the Lakehouse. Data

governance for a data lakehouse provides the following key

capabilities:

Unified catalog: A unified catalog stores all data, ML

models, and analytics artifacts, in addition to

metadata for each data object.

Unified data access controls: A single and unified

permissions model across all data assets and all

clouds.

Data isolation: Data isolation can be achieved at

many levels like environment, storage location,

data objects of increasing granularity without losing

the ability to manage access and auditing centrally.

Data auditing: Data access is centrally audited with

alerts and monitoring capabilities to promote

accountability.

Data quality management: Robust data quality

management with built-in quality controls, testing,

monitoring, and enforcement to ensure accurate

and useful data.

Data lineage: Data lineage to get end-to-end

visibility into how data flows in Lakehouse from

source to consumption.

Data discovery: Easy data discovery to enable data

scientists, data analysts, and data engineers to

quickly discover and reference relevant data.

Data sharing: Data can be shared across clouds and

platforms.

Azure Databricks provides centralized governance for data

and AI with Unity Catalog and Delta Sharing.

Unity Catalog

Unity Catalog provides centralized access control, auditing,

lineage, and data discovery capabilities across Azure

Databricks workspaces.

Key features of Unity Catalog include:

Unity Catalog offers a single place to administer

data access policies that apply across all

workspaces.

Unity Catalog’s security model allows

administrators to grant permissions in their existing

data lake at the level of catalogs, databases (also

called schemas), tables, and views.

Unity Catalog automatically captures user-level

audit logs that record access to data.

Unity Catalog captures lineage data that tracks how

data assets are created and used across all

languages.

Unity Catalog lets user tag and document data

assets and provides a search interface to help data

consumers find data.

Unity Catalog lets user easily access and query

account’s operational data, including audit logs,

billable usage, and lineage.

Unity Catalog object model

In Unity Catalog, the hierarchy of primary data objects flows

from metastore to table or volume:

Metastore: The top-level container for metadata.

Each metastore exposes a three-level namespace

(catalog.schema.table) that organizes data.

Catalog: The first layer of the object hierarchy, used

to organize data assets.

Schema: Also known as databases, schemas are the

second layer of the object hierarchy and contain

tables and views.

Volume: Volumes sit alongside tables and views at

the lowest level of the object hierarchy and provide

governance for non-tabular data.

Table: At the lowest level in the object hierarchy are

tables and views.

Metastores

A metastore is the top-level container of objects in Unity

Catalog. It stores metadata about data assets (tables and

views) and the permissions that govern access to them.

Metastore should be created and assigned to Azure

Databricks workspaces in the same region. For a workspace

to use Unity Catalog, it must have a Unity Catalog

metastore attached.

This metastore is distinct from the Hive metastore. If

workspace includes a legacy Hive metastore, the data in

that metastore will still be available alongside data defined

in Unity Catalog, in a catalog

named hive_metastore. hive_metastore catalog is not

managed by Unity Catalog and does not benefit from the

same feature set as catalogs defined in Unity Catalog.

Each metastore is configured with a managed storage

location in cloud storage e.g. an Azure Data Lake Storage

Gen2 container in Azure account.

Managed storage

When an account admin creates a metastore, account

admin must associate a storage location in cloud storage

e.g. an Azure Data Lake Storage Gen2 container in Azure

account to use as managed storage.

Managed tables and managed volumes store data and

metadata files in managed storage. Managed storage

cannot overlap with external tables, external volumes, or

other managed storage.

Catalog

A catalog is the first layer of Unity Catalog’s three-level

namespace. It’s used to organize data assets. Users can

see all catalogs on which they have been assigned the USE

CATALOG data permission.

Schemas

A schema (also called a database) is the second layer of

Unity Catalog’s three-level namespace. A schema organizes

tables and views. Users can see all schemas on which they

have been assigned the USE SCHEMA permission, along with

the USE CATALOG permission on the schema’s parent

catalog. To access or list a table or view in a schema, users

must also have SELECT permission on the table or view.

Tables

A table resides in the third layer of Unity Catalog’s three-

level namespace. It contains rows of data. To create a table,

users must have CREATE and USE SCHEMA permissions on the

schema, and they must have the USE CATALOG permission on

its parent catalog. To query a table, users must have

the SELECT permission on the table, the USE

SCHEMA permission on its parent schema, and the USE

CATALOG permission on its parent catalog. A table can be

managed or external.

Managed Table:

Managed tables are the default way to create tables in Unity

Catalog. Unity Catalog manages the lifecycle and file layout

for these tables.

By default, managed tables are stored in the root storage

location that user configures while creating a metastore.

User can optionally specify managed table storage locations

at the catalog or schema levels, overriding the root storage

location. Managed tables always use the Delta table format.

When a managed table is dropped, its underlying data is

deleted from our cloud tenant within 30 days.

External tables

External tables are tables whose data lifecycle and file

layout are not managed by Unity Catalog. When user drops

an external table, Unity Catalog does not delete the

underlying data. User can manage privileges on external

tables and use them in queries in the same way as

managed tables.

External tables can use the following file formats:

DELTA

CSV

JSON

AVRO

PARQUET

ORC

TEXT

Views

A view is a read-only object created from one or more tables

and views in a metastore. It resides in the third layer of

Unity Catalog’s three-level namespace. A view can be

created from tables and other views in multiple schemas

and catalogs.

Identity management for Unity Catalog

Unity Catalog uses the identities in the Databricks account

to resolve users, service principals, and groups, and to

enforce permissions.

Unity Catalog users, service principals, and groups must

also be added to workspaces to access Unity Catalog data.

Admin roles for Unity Catalog

The following admin roles are required for managing Unity

Catalog:

Account admins can manage identities, cloud

resources and the creation of workspaces and Unity

Catalog metastores. Account admins can enable

workspaces for Unity Catalog. They can grant both

workspace and metastore admin permissions.

Metastore admins can manage privileges and

ownership for all securable objects within a

metastore, such as who can create catalog or query

a table. The account admin who creates the Unity

Catalog metastore becomes the initial metastore

admin. The metastore admin can also choose to

delegate this role to another user or group.

Workspace admins can add users to an Databricks

workspace, assign them the workspace admin role,

and manage access to objects and functionality in

the workspace, such as the ability to create clusters

and change job ownership.

Data permissions in Unity Catalog

In Unity Catalog, data is secure by default. Initially, users

have no access to data in a metastore. Access can be

granted by either a metastore admin, the owner of an

object, or the owner of the catalog or schema that contains

the object.

Cluster access modes for Unity Catalog

To access data in Unity Catalog, clusters must be configured

with the correct access mode. If a cluster is not configured

with one of the Unity-Catalog-capable access modes (that is,

shared or assigned), the cluster can’t access data in Unity

Catalog.

Data lineage for Unity Catalog

User can use Unity Catalog to capture runtime data lineage

across queries. Lineage is captured down to the column

level, and includes notebooks, workflows and dashboards

related to the query.

Unity Catalog metastore

A metastore is the top-level container of objects in Unity

Catalog. It stores metadata about data assets (tables and

views) and the permissions that govern access to them.

User must create one metastore for each region in which

the organization operates. To create a metastore:

User must be an Databricks account admin.

The workspaces that user attach to the metastore

must be on the Databricks Premium plan.

User must have permission to create:

A storage account to use e.g. Azure Data

Lake Storage Gen2.

Be a Contributor or Owner of a resource

group in any subscription in the tenant.

Create a storage container where the

metastore’s managed table data will be stored. This

storage container must be in an Azure Data Lake

Storage Gen2 account in the same region as the

workspaces user want to use to access the data.

Create an identity that Databricks uses to give

access to that storage container. User can use

either an Azure managed identity or a service

principal as the identity that gives access to the

metastore’s storage container.

Unlike service principals, managed identities do not

require to maintain credentials or rotate secrets, and

they let user connect to an Azure Data Lake Storage

Gen2 account that is protected by a storage firewall.

Provide Databricks with the storage container path

and identity.

Create a metastore

Create an Azure Databricks access connector and

assign it permissions to the storage container

where user wants the metastore’s managed tables

to be stored.

An Azure Databricks access connector is a first-party

Azure resource that lets user connect a system-

assigned managed identity to an Azure Databricks

account. Make a note of the access connector’s

resource ID.

Log in to the Azure Databricks account console.

Click Data

Click Create Metastore .

Enter values for the following field

Name for the metastore.

Region where the metastore will be

deployed. This must be the same region as

the workspaces user wants to use to access

the data. Make sure that it matches the

https://accounts.azuredatabricks.net/login/

region of the access connector and storage

container that user created earlier.

ADLS Gen 2 path : Enter the path to the

storage container that user will use as the

default root storage for managed table

data.

Access Connector ID : Enter the Azure

Databricks access connector’s resource ID.

Click Create .

When prompted, select workspaces to link to the

metastore.

Enable a workspace for Unity Catalog

To enable an Azure Databricks workspace for Unity Catalog,

user should assign the workspace to a Unity Catalog

metastore. A metastore is the top-level container for data in

Unity Catalog. Each metastore exposes a 3-level namespace

(catalog.schema.table) by which data can be organized.

User can share a single metastore across multiple

Databricks workspaces in an account. Each linked

workspace has the same view of the data in the metastore,

and user can manage data access control across

workspaces. User can create one metastore per region and

attach it to any number of workspaces in that region.

Before user can enable workspace for Unity Catalog, user

must have a Unity Catalog metastore configured for

Databricks account.

To enable an existing workspace:

As an account admin, log in to the account console

Click data

Click the metastore name.

Click the Workspaces tab.

Click Assign to workspaces.

Select one or more workspaces.

Click Assign

On the confirmation dialog, click Enable.

To enable Unity Catalog when user creates a workspace:

As an account admin, log in to the account console.

Click Workspaces

Click the Enable Unity Catalog toggle.

Select the Metastore.

On the confirmation dialog, click Enable.

Complete the workspace creation configuration and

click Save.

When the assignment is complete, the workspace appears

in the metastore’s Workspaces tab, and the metastore

appears on the workspace’s Configuration tab.

Create clusters & SQL warehouses with Unity Catalog

access

SQL warehouses are used to run Databricks SQL workloads,

such as queries, dashboards, and visualizations. SQL

warehouses allow user to access Unity Catalog data and run

Unity Catalog-specific commands by default, as long as

workspace is attached to a Unity Catalog metastore.

Clusters are used to run workloads using notebooks or

automated jobs. To create a cluster that can access Unity

Catalog, the cluster must be attached to a Unity Catalog

metastore and must use a Unity-Catalog-capable access

mode (shared or single user).

User can work with data in Unity Catalog using either of SQL

warehouses for SQL Editor or clusters for notebooks.

To create a cluster that can access Unity Catalog, the

workspace must be attached to a Unity Catalog metastore.

Unity Catalog requires clusters that run Databricks Runtime

11.3 LTS or above.

Create and manage Catalogs

To create catalog, following requirements should be met:

User must be an Databricks metastore admin or

have been granted the CREATE CATALOG privilege

on the metastore

Databricks account must be on the Premium plan.

User must have a Unity Catalog metastore linked to

the workspace where user can perform the catalog

creation.

The compute resource that user use to run the

notebook or Databricks SQL to create the catalog

must be using a Unity Catalog compliant access

mode.

To create a catalog, user can use Data Explorer or a SQL

command. The steps are:

Data Explorer:

Log in to a workspace that is linked to the

metastore.

Click Data icon.

Click the Create Catalog button.

Optionally specify the location where data

for managed tables in the catalog will be stored.

Specify a location here only if user does not want

managed tables in this catalog to be stored in the

default root storage location (configured for the

metastore).

The path that user specifies must be defined in an

external location configuration, and user must have

the CREATE MANAGED STORAGE privilege on that

external location. User can also use a subpath of that

path.

Click Create.

By default, the catalog is shared with all workspaces

attached to the current metastore. If the catalog will contain

data that should be restricted to specific workspaces, go to

the Workspaces tab and add those workspaces. Assign

permissions for catalog.

Using SQL

The SQL syntax for creating catalog is:

CREATE CATALOG [IF NOT EXISTS] <catalog-name>

 [MANAGED LOCATION '<location-path>']

 [COMMENT <comment>];

<catalog-name>: A name for the catalog.

<location-path>: Optional. Provide a storage

location path if user wants managed tables in this

catalog to be stored in a location that is different

than the default that was configured for the

metastore.

<comment>: Optional description or other

comment.

For example, to create a catalog named testcatalog

CREATE CATALOG IF NOT EXISTS testcatalog;

Assign the required privileges to the catalog.

Using Python:

To create the catalog using python:

spark.sql("CREATE CATALOG IF NOT EXISTS testcatalog")

The default is to share the catalog with all workspaces

attached to the current metastore. User can optionally

assign a catalog to specific workspaces. If user uses

workspaces to isolate user data access, user may want to

limit catalog access to specific workspaces in his account.

Typical use cases for binding a catalog to specific

workspaces include:

Ensuring that users can only access production data

from a production workspace environment.

Ensuring that users can only process sensitive data

from a dedicated workspace.

In this diagram, prod_catalog is bound to two production

workspaces. Suppose a user has been granted access to a

table in prod_catalog called my_table(using GRANT SELECT ON

my_table TO <user>). The user can access my_table only from the

Prod ETL and Prod Analytics workspaces. If the user tries to

access my_table in the Dev workspace, user will receive an

error message.

Only Metastore admin or catalog owner can assign a catalog

to specific workspaces. To assign a catalog to specific

workspaces:

Log in to a workspace that is linked to the

metastore

Click Data

In the Data pane, on the left, click the catalog

name. Data Explorer pane will show

the Catalogs list. Select the catalog from the list.

On the Workspaces tab, clear the All workspaces

have access checkbox.

Click Assign to workspaces and enter or find the

workspace user wants to assign.

To revoke access, go to the Workspaces tab, select the

workspace, and click Revoke.

To view information about a catalog, user can use Data

Explorer or a SQL command.

Data explorer:

Log in to a workspace that is linked to the

metastore.

Click Data

In the Data pane, find the catalog and click its

name. Some details are listed at the top of the

page. Others can be viewed on the Schemas,

Details, Permissions and

Workspaces tabs.

SQL

User can run the SQL command in a notebook or Databricks

SQL editor. The following command returns the metadata of

an existing catalog. The metadata information includes

catalog name, comment, and owner.

DESCRIBE CATALOG <catalog-name>;

Use CATALOG EXTENDED to get full details.

To drop catalog:

DROP CATALOG [IF EXISTS] <catalog-name> [RESTRICT | CASCADE]

If user uses DROP CATALOG without the CASCADE option,

user must delete all schemas in the catalog

except information_schema before user can delete the

catalog. This includes the auto-created default schema. Use

CASCADE option to delete catalog with all its schema.

For example, to delete a catalog named testcatalog and its

schemas:

DROP CATALOG testcatalog CASCADE

Python code to delete a catalog named testcatalog and its

schemas:

spark.sql("DROP CATALOG testcatalog CASCADE")

Create and manage schemas (databases)

A schema contains tables, views, and functions. Schema is

created inside catalog.

Requirements:

User must have the USE CATALOG and CREATE

SCHEMA data permissions on the schema’s parent

catalog. All users have the USE CATALOG

permission on the main catalog by default.

Databricks account must be on the Premium plan.

Unity Catalog metastore must be linked to the

workspace where user wants to create Schema.

The compute resource that user uses to run the

notebook or Databricks SQL to create the catalog

must be using a Unity Catalog compliant access

mode.

Create a schema

To create a schema (database), user can use Data Explorer

or SQL commands.

Data explorer

Log in to a workspace that is linked to the

metastore.

Click Data

In the Data pane on the left, click the catalog where

user wants to create the schema in.

In the detail pane, click Create database.

Give the schema a name

Optionally, specify the location where data

for managed tables in the schema will be stored.

Specify a location here only if user does not want

managed tables in this schema to be stored in the

default root storage location configured for

the metastore.

Click Create

Click Save

SQL

Run the following SQL commands in a notebook or

Databricks SQL editor. Items in brackets are optional.

USE CATALOG <catalog>;

CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] <schema-name>

 [MANAGED LOCATION '<location-path>']

 [COMMENT <comment>]

 [WITH DBPROPERTIES (<property-key = property_value [, ...]>)];

User can optionally omit the USE CATALOG statement and

replace <schema-name> with <catalog-name>.<schema-

name>.

Python

The code in python to create schema will be like:

spark.sql("USE CATALOG <catalog>")

spark.sql("CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] <schema-name> "

\

 "[MANAGED LOCATION '<location-path>'] " \

 "[COMMENT <comment>] " \

 "[WITH DBPROPERTIES (<property-key = property_value [, ...]>)]")

<catalog-name>: The name of the parent catalog

for the schema.

<schema-name>: A name for the schema.

<location-path>: Optional. Provide a storage

location path if user wants managed tables in this

schema to be stored in a location that is different

than the catalog’s or metastore’s root storage

location.

<comment>: An optional comment.

<property-key> = <property-value> [, ...]: The

Spark SQL properties and values to set for the

schema.

To drop the schema:

SQL:

DROP SCHEMA [IF EXISTS] <schema-name> [RESTRICT | CASCADE]

If user uses DROP SCHEMA without the CASCADE option, user

must delete all tables in the schema before user can delete

it.

For example, to delete a schema named testSchema and its

tables:

DROP SCHEMA testSchema CASCADE

To drop schema using python,

spark.sql("DROP SCHEMA testSchema CASCADE")

Create Tables

Unity Catalog has two types of tables,

managed and external tables.

Managed tables

Managed tables are the default way to create tables in Unity

Catalog. Unity Catalog manages the lifecycle and file layout

for these tables.

By default, managed tables are stored in the root storage

location that user configures when user creates a

metastore. User can optionally specify managed table

storage locations at the catalog or schema levels, overriding

the root storage location. Managed tables always use

the Delta table format.

When a managed table is dropped, its underlying data is

deleted from user’s cloud tenant within 30 days.

To create a managed table, run the following SQL

command.

CREATE TABLE <catalog-name>.<schema-name>.<table-name>

(

 <column-specification>

);

<catalog-name>: The name of the catalog. This

cannot be the hive_metastore catalog that is

created automatically for the Hive metastore

associated with the Azure Databricks workspace.

<schema-name>: The name of the schema.

<table-name>: A name for the table.

<column-specification>: The name and data type

for each column.

The python command will be:

spark.sql("CREATE TABLE <catalog-name>.<schema-name>.<table-name> "

 "("

 " <column-specification>"

 ")")

The below example creates a table of name Student in

“main” catalog and default schema.

Using SQL:

CREATE TABLE main.default.Student

(

 StudentID INT,

 FirstName INT,

 LastName INT

);

INSERT INTO main.default.Student VALUES

 (10, 'Amit', 'Kumar'),

 (20, 'John', 'mathew');

To drop a table:

DROP TABLE IF EXISTS catalog_name.schema_name.table_name;

External tables

External tables are tables whose data is stored outside of

the managed storage location specified for the metastore,

catalog, or schema. Use external tables only when user

requires direct access to the data outside of Azure

Databricks clusters or Databricks SQL warehouses.

When user runs DROP TABLE on an external table, Unity

Catalog does not delete the underlying data. To create an

external table with SQL, specify a LOCATION path in the

CREATE TABLE statement. External tables can use the

following file formats:

DELTA

CSV

JSON

AVRO

PARQUET

ORC

TEXT

To create external table, user must have the following

permissions:

CREATE EXTERNAL TABLE on the external location

that references the cloud storage path user

specifies.

CREATE TABLE on the parent schema.

USE SCHEMA on the parent schema.

USE CATALOG on the parent catalog.

The following command creates an external table. It can be

run on notebook or the SQL query editor.

CREATE TABLE <catalog>.<schema>.<table-name>

(

 <column-specification>

)

LOCATION 'abfss://<bucket-path>/<table-directory>';

< catalog>: The name of the catalog that will

contain the table.

<schema>: The name of the schema that will

contain the table.

<table-name>: A name for the table.

<column-specification>: The name and data type

for each column.

<bucket-path>: The path on cloud tenant where

the table will be created.

<table-directory>: A directory where the table will

be created. Use a unique directory for each table.

Once a table is created in a path, users can no longer

directly access the files in that path from Databricks even if

they have been given privileges on an external location or

storage credential to do so.

The python code for creating table will be like:

spark.sql("CREATE TABLE <catalog>.<schema>.<table-name> "

 "("

 " <column-specification>"

 ") "

 "LOCATION 'abfss://<bucket-path>/<table-directory>'")

Create a table from the files

To create a new managed table and populate it with data in

cloud storage, use the following example:

CREATE TABLE <catalog>.<schema>.<table-name>

(

 <column-specification>

)

SELECT * from <format>.`abfss://<path-to-files>`;

Using python:

spark.sql("CREATE TABLE <catalog>.<schema>.<table-name> "

 "("

 " <column-specification> "

 ") "

 "SELECT * from <format>.`abfss://<path-to-files>`")

To create an external table and populate it with data in

user’s cloud storage, add a

LOCATION clause:

CREATE TABLE <catalog>.<schema>.<table-name>

(

 <column-specification>

)

USING <format>

LOCATION 'abfss://<table-location>'

SELECT * from <format>.`abfss://<path-to-files>`;

Using python:

spark.sql("CREATE TABLE <catalog>.<schema>.<table-name> "

 "("

 " <column-specification> "

 ") "

 "USING <format> "

 "LOCATION 'abfss://<table-location>' "

 "SELECT * from <format>.`abfss://<path-to-files>`")

Insert records from a path into an existing table

To insert records from a bucket path into an existing table,

use the COPY INTO command.

COPY INTO <catalog>.<schema>.<table>

FROM (

 SELECT *

 FROM 'abfss://<path-to-files>'

)

FILEFORMAT = <format>;

<catalog>: The name of the table’s parent catalog.

<schema>: The name of the table’s parent

schema.

<path-to-files>: The bucket path that contains the

data files.

<format>: The format of the files, for

example delta.

<table-location>: The bucket path where the table

will be created.

User must have the following permissions:

USE CATALOG on the parent catalog and USE

SCHEMA on the schema.

MODIFY on the table.

READ FILES on the external location associated

with the bucket path where the files are located, or

directly on the storage credential if user is not using

an external location.

To insert records into an external table, user

needs CREATE EXTERNAL TABLE on the bucket

path where the table is located.

To insert into an external table, add a LOCATION clause:

COPY INTO <catalog>.<schema>.<table>

LOCATION 'abfss://<table-location>'

FROM (

 SELECT *

 FROM 'abfss://<path-to-files>'

)

FILEFORMAT = <format>;

Create views

A view is a read-only object composed from one or more

tables and views in a metastore. It resides in the third layer

of Unity Catalog’s three-level namespace. A view can be

created from tables and other views in multiple schemas

and catalogs.

Dynamic views can be used to provide row and column-level

access control, in addition to data masking.

The owner of a view must have the ability to read the tables

and views referenced in the view. A reader of a view does

not need the ability to read the tables and views referenced

in the view, unless they are using a cluster with Single User

access mode. To read from a view from a cluster with Single

User access mode , user must have SELECT on all

referenced tables and views.

Create a view

To create a view, run the following SQL command. Items in

brackets are optional.

CREATE VIEW <catalog-name>.<schema-name>.<view-name> AS

SELECT <query>;

The python code for the view creation:

spark.sql("CREATE VIEW <catalog-name>.<schema-name>.<view-name> AS

SELECT <query>")

SQL Example:

CREATE VIEW main.default.StudentView AS

SELECT

 StudentID,

 FirstName,

 LastName,

FROM main.default.Student;

Drop a view

User must be the view’s owner to drop a view. To drop a

view, run the following SQL command:

DROP VIEW IF EXISTS catalog_name.schema_name.view_name;

Manage external locations and storage credentials

External locations and storage credentials allow Unity

Catalog to read and write data on user’s cloud tenant on

behalf of users. These external locations and storage

credentials are used for:

Creating, reading from, and writing to external

tables.

Overriding the metastore’s default managed

table storage location at the catalog or schema

level.

Creating a managed or external table from

files stored on user’s cloud tenant.

Inserting records into tables from files stored on

user’s cloud tenant.

Directly exploring data files stored on user’s cloud

tenant.

Storage credentials

A storage credential represents an authentication and

authorization mechanism for accessing data stored on

user’s cloud tenant, using either an Azure managed

identity (strongly recommended) or a service principal.

Each storage credential is subject to Unity Catalog access-

control policies that control which users and groups can

access the credential. If a user does not have access to a

storage credential in Unity Catalog, the request fails and

Unity Catalog does not attempt to authenticate to cloud

tenant on the user’s behalf. User can mark a storage

credential as [read-only] to prevent users from writing to

external locations that use the storage credential.

External location

An external location is an object that combines a cloud

storage path with a storage credential that authorizes

access to the cloud storage path. Each storage location is

subject to Unity Catalog access-control policies that control

which users and groups can access the credential. If a user

does not have access to a storage location in Unity Catalog,

the request fails and Unity Catalog does not attempt to

authenticate to cloud tenant on the user’s behalf.

User can mark an external location as [read-only] to prevent

users from writing to that location, which means that users

cannot create tables or volumes (whether external or

managed) in that location.

External locations can be used not just to define storage

locations for external tables and volumes, but also for

managed tables and volumes. They can be used to define

storage locations for managed tables and volumes at the

catalog and schema levels, overriding the metastore root

storage location.

Databricks recommends using external locations rather than

using storage credentials directly.

To create storage credentials, user must be an

Azure Databricks account admin. The account

admin who creates the storage credential can

delegate ownership to another user or group to

manage permissions on it.

To create external locations, user must be a

metastore admin or a user with the CREATE

EXTERNAL LOCATION privilege.

External locations must use Azure Data Lake

Storage Gen2 storage accounts that have a

hierarchical namespace.

Create a storage credential

User can use either an Azure managed identity or a service

principal as the identity that authorizes access to our

storage container. Managed identities are strongly

recommended. They have the benefit of allowing Unity

Catalog to access storage accounts protected by network

rules, which isn’t possible using service principals. Managed

identities remove the need to manage and rotate secrets.

To create a storage credential using a managed identity:

Create an Azure Databricks access connector and

assign it permissions to the storage container that

user would like to access. An Azure Databricks

access connector lets us connect managed

identities to an Azure Databricks account. Make a

note of the access connector’s resource ID.

Log in to Unity Catalog-enabled Azure Databricks

workspace as a user who has the account admin

role on the Azure Databricks account.

Click Data

At the bottom of the screen, click Storage

Credentials .

Click +Add > Add a storage credential .

On the Create a new storage credential dialog,

select Managed identity (recommended) .

Enter a name for the credential, and enter the

access connector’s resource ID.

If user wants other users to have read-only access

to the external locations that use this storage

credential, select Read only. It is optional.

Click Save.

To view the list of all storage credentials and to view a

storage credential in a metastore, user can use Data

Explorer or a SQL command.

Using Data explorer:

Log in to a workspace that is linked to the

metastore.

Click Data.

At the bottom of the screen, click Storage

Credentials. This will display list of storage

credentials.

Click the name of a storage credential to see

its properties.

Using SQL:

Run the following command in a notebook or the Databricks

SQL editor to see all storage credentials.

SHOW STORAGE CREDENTIALS;

To see the properties of a given storage credential:

DESCRIBE STORAGE CREDENTIAL <credential-name>;

Using Python:

Run the following command in a notebook.

display(spark.sql("SHOW STORAGE CREDENTIALS"))

To see the properties of a given storage credential:

display(spark.sql("DESCRIBE STORAGE CREDENTIAL <credential-name>"))

Manage permissions for a storage credential

User can grant permissions directly on the storage

credential, but Databricks strongly recommends that user

references it in an external location and grant permissions

to that instead. An external location combines a storage

credential with a specific path and authorizes access only to

that path and its contents.

User can grant and revoke the following permissions on a

storage credential:

CREATE TABLE

READ FILES

WRITE FILES

To show grants on a storage credential, use a command like

the following:

SHOW GRANTS [<principal>] ON STORAGE CREDENTIAL <storage-credential-

name>;

<principal>: The email address of the account-level

user or the name of the account level group to

whom to grant the permission.

<storage-credential-name>: The name of a storage

credential.

Using Python:

display(spark.sql("SHOW GRANTS [<principal>] ON STORAGE CREDENTIAL

<storage-credential-name>"))

To grant permission to a principle to create an external table

using a storage credential directly:

GRANT CREATE EXTERNAL TABLE ON STORAGE CREDENTIAL <storage-

credential-name> TO <principal>;

Using Python:

spark.sql("GRANT CREATE EXTERNAL TABLE ON STORAGE CREDENTIAL

<storage-credential-name> TO <principal>")

To grant permission to select from an external table using a

storage credential directly:

GRANT READ FILES ON STORAGE CREDENTIAL <storage-credential-name> TO

<principal>;

Using Python

spark.sql("GRANT READ FILES ON STORAGE CREDENTIAL <storage-credential-

name> TO <principal>")

Change the owner of a storage credential:

A storage credential’s creator is its initial owner. To change

the owner to a different account-level user or group, do the

following:

Using SQL:

ALTER STORAGE CREDENTIAL <credential-name> OWNER TO <principal>;

Using Python:

spark.sql("ALTER STORAGE CREDENTIAL <credential-name> OWNER TO

<principal>")

Delete a storage credential

Using SQL:

DROP STORAGE CREDENTIAL IF EXISTS <credential-name>;

Using Python:

spark.sql("DROP STORAGE CREDENTIAL IF EXISTS <credential-name>")

Manage external locations

User can create an external location using Data Explorer ,

the Databricks CLI, SQL commands in a notebook or

Databricks SQL query, or Terraform .

Run the following SQL command in a notebook or the

Databricks SQL editor.

CREATE EXTERNAL LOCATION <location-name>

 URL 'abfss://<container-name>@<storage-

account>.dfs.core.windows.net/<path>'

 WITH ([STORAGE] CREDENTIAL <storage-credential-name>);

<location-name>: A name for the external location.

<bucket-path>: The path in cloud tenant that this

external location grants access to.

<storage-credential-name>: The name of the storage

credential that contains details about a service

principal that is authorized to read to and write from

the storage container path.

External locations only support Azure Data Lake Storage

Gen2 storage.

Describe an external location:

To see the properties of an external location, user can use

Data Explorer or a SQL command.

Run the following command in a notebook or the Databricks

SQL editor. Replace <location-name> with the name of the

location.

DESCRIBE EXTERNAL LOCATION <location-name>;

Using Python:

display(spark.sql("DESCRIBE EXTERNAL LOCATION <location-name>"))

Rename an external location:

ALTER EXTERNAL LOCATION <location-name> RENAME TO <new-location-

name>;

Change external location URI:

ALTER EXTERNAL LOCATION location_name SET URL '<url>' [FORCE];

Change the storage credential of an external location:

ALTER EXTERNAL LOCATION <location-name> SET STORAGE CREDENTIAL

<credential-name>

Manage permissions for an external location

User can grant and revoke the following permissions on an

external location using Data Explorer , the Databricks CLI,

SQL commands in a notebook or Databricks SQL query,

or Terraform .

CREATE TABLE

READ FILES

WRITE FILES

To show grants on an external location:

Using SQL:

SHOW GRANTS [<principal>] ON EXTERNAL LOCATION <location-name>;

<location-name>: The name of the external

location that authorizes reading from and writing to

the storage container path in your cloud tenant.

<principal>: The email address of an account-level

user or the name of an account-level group.

Using Python:

display(spark.sql("SHOW GRANTS [<principal>] ON EXTERNAL LOCATION

<location-name>"))

To grant permission to use an external location to create a

table:

GRANT CREATE EXTERNAL TABLE ON EXTERNAL LOCATION <location-name> TO

<principal>;

To grant permission to read files from an external location:

GRANT READ FILES ON EXTERNAL LOCATION <location-name> TO <principal>;

Change the owner of an external location:

An external location’s creator is its initial owner. To change

the owner to a different account-level user or group, run the

following command in a notebook or the Databricks SQL

editor

ALTER EXTERNAL LOCATION <location-name> OWNER TO <principal>

Delete an external location:

To delete (drop) an external location user must be its owner.

To delete an external location, use the following command:

DROP EXTERNAL LOCATION IF EXISTS <location-name>;

Mark an external location or storage credential as read-only.

If user wants users to have read-only access to an external

location, user can use Data Explorer to mark the external

location as read-only.

If user wants users to have read-only access to all external

locations that are referenced by a specific storage

credential, user can use Data Explorer to mark that storage

credential as read-only.

Making storage credentials and external locations read-only:

Prevents users from writing to files in those external

locations, regardless of any write permissions

granted by the Azure managed identity and

regardless of the Unity Catalog permissions granted

on that external location.

Prevents users from creating tables or volumes

(whether external or managed) in those external

locations.

To mark storage credentials and external locations as read-

only:

In Data Explorer, find the storage credential or

external location, click the kebab menu (also

known as the three-dot menu) on the object row,

and select Edit.

On the edit dialog, select the Read only option.

Query data

To query data in a table or view, the user must have the USE

CATALOG permission on the parent catalog, the USE

SCHEMA permission on the parent schema, and

the SELECT permission on the table or view.

To read from a view on a cluster that uses single-user access

mode, the user must have SELECT on all referenced tables

and views.

Three-level namespace notation

In Unity Catalog, a table or view is contained within a parent

catalog and schema. User can refer to a table or view using

two different styles of notation. User can use USE CATALOG

and USE statements to specify the catalog and schema:

Using SQL:

USE CATALOG <catalog-name>;

USE SCHEMA <schema-name>;

SELECT * from <table-name>;

As an alternative, user can use three-level namespace

notation:

SELECT * from <catalog-name>.<schema-name>.<table-name>;

Using Python:

spark.sql("USE CATALOG <catalog-name>")

spark.sql("USE SCHEMA <schema-name>")

display(spark.table("<table-name>"))

Explore tables and views in Databricks SQL

User can explore tables and views without the need to run a

cluster by using Data Explorer.

To open Data Explorer, click Data in the sidebar.

In Data Explorer, select the catalog and schema to

view its tables and views.

For objects in the Hive Metastore, user must be running a

SQL warehouse to use Data Explorer.

To select from a table or view using a notebook:

In the sidebar, click New > Notebook.

Attach the notebook to a SQL

warehouse or cluster that uses an access mode that

supports Unity Catalog.

In the notebook, create a query that references

Unity Catalog tables and views.

To select from a table or view using the SQL Editor:

In the sidebar, click SQL Editor .

Select a SQL warehouse .

Compose a query. To insert a table or view into the

query, select a catalog and schema, then click the

name of the table or view to insert.

Click Run .

To explore data stored in an external location before user

creates tables from that data, user can use Data Explorer or

the following commands:

SELECT * FROM <format>.`abfss://<path-to-files>`;

Using Python:

display(spark.read.load("abfss://<path-to-files>"))

Apply Tags

Tags are attributes containing keys and optional values that

user can apply to different securable objects in Unity

Catalog. Tagging is useful for organizing and categorizing

different securable objects within a metastore. Using tags

also simplifies search and discovery of data assets.

Tagging is currently supported on catalogs, schemas, and

tables.

To create securable object tags using the Data Explorer UI:

Click Data in the sidebar.

Select a securable object to view the tag

information.

Click Add/Edit Tags to manage tags for the current

securable object. User can add and remove multiple

tags simultaneously in the tag management model.

Work with Unity Catalog and the legacy Hive

metastore

If workspace was in service before it was enabled for Unity

Catalog, it likely has a Hive metastore that contains data

that user wants to continue to use.

The Hive metastore appears as a top-level catalog

called hive_metastore in the three-level namespace.

For example, user can refer to a table called sales_detail in

the sales schema in the legacy Hive metastore by using the

following notation:

SELECT * from hive_metastore.sales.sales_detail;

By using three-level namespace notation, user can join data

in a Unity Catalog metastore with data in the legacy Hive

metastore.

The following example joins results from

the sales_current table in the legacy Hive metastore with

the sales_historical table in the Unity Catalog metastore

when the order_id fields are equal.

SELECT * FROM hive_metastore.sales.sales_current

JOIN main.shared_sales.sales_historical

ON hive_metastore.sales.sales_current.order_id =

main.shared_sales.sales_historical.order_id;

A join with data in the legacy Hive metastore will only work

on the workspace where that data resides. Trying to run

such a join in another workspace results in an

error. Databricks recommends that user upgrades legacy

tables and views to Unity Catalog.

Upgrade tables and views to Unity Catalog

Tables in the catalog hive_metastore are registered in the

Hive metastore. Any other catalogs listed are governed by

Unity Catalog.

To upgrade a table to Unity Catalog as a managed table, use

the below command

CREATE TABLE <catalog>.<new-schema>.<new-table>

AS SELECT * FROM hive_metastore.<old-schema>.<old-table>;

<catalog>: The Unity Catalog catalog for the new

table.

<new-schema>: The Unity Catalog schema for the

new table.

<new-table>: A name for the Unity Catalog table.

<old-schema>: The schema for the old table, such

as default.

<old-table>: The name of the old table.

This command creates a managed table in which data is

copied into the storage location that was nominated when

the metastore was set up.

Databricks SQL

Databricks SQL lets us run all SQL and BI applications at

scale with better price and performance.

Create a SQL warehouse

A SQL warehouse is a simplified compute resource that lets

us run SQL commands on data objects within Databricks

SQL.

Databricks recommends creating a serverless SQL

warehouse. Serverless SQL warehouses are fully managed

by Azure Databricks and give users instant access to elastic

compute resources.

To create a SQL warehouse:

Click SQL Warehouses in the sidebar then Create

SQL Warehouse.

Enter a Name for the warehouse.

Accept the default warehouse settings or edit them.

Click Create.

The permissions modal appears, where user can

give users or groups access to the warehouse.

To grant Databricks SQL access to a user:

As a workspace admin, go to Admin Settings.

Click to the Users tab.

In the user row, click Databricks SQL access.

To manually start a stopped SQL warehouse, click SQL

Warehouses in the sidebar then click the start icon next to

the warehouse.

To stop a running warehouse, click the stop icon next to the

warehouse.

Warehouse settings

Creating a SQL warehouse in the UI requires the following

settings:

Cluster Size: Represents the size of the driver node

and number of worker nodes associated with the

cluster. To reduce query latency, increase the size.

Auto Stop: It determines whether the warehouse

stops if it’s idle for the specified number of

minutes. Idle SQL warehouses continue to

accumulate DBU and cloud instance charges until

they are stopped.

Scaling: It sets the minimum and maximum number

of clusters that will be used for a query. The default

is a minimum and a maximum of one cluster. User

can increase the maximum clusters if user wants to

handle more concurrent users for a given query.

Azure Databricks recommends a cluster for every

10 concurrent queries.

Type: It determines the type of

warehouse. Databricks SQL supports three

warehouse types, each with different levels of

performance and feature support.

Warehouse Types

Databricks SQL supports three warehouse types, each with

different levels of performance and feature support.

Serverless

Supports all features in the pro SQL warehouse type, as well

as advanced Databricks SQL performance features. SQL

warehouses run in the customer’s Azure Databricks account

using serverless compute.

Classic

Supports entry level performance features and a limited set

of Databricks SQL functionality.

To upgrade existing SQL warehouses to serverless:

In the sidebar, click SQL Warehouses.

In the Actions column, click the vertical

ellipsis then click Upgrade to Serverless.

Pro

Supports additional Databricks SQL performance features

(compared to classic) and supports all Databricks SQL

functionality.

Monitor a SQL Warehouse

To monitor a SQL warehouse, click the name of a SQL

warehouse and then the Monitoring tab.

Materialized Views

In Databricks SQL, materialized views are Unity Catalog

managed tables that allow users to precompute results

based on the latest version of data in source tables.

Materialized views reduce cost and improve query latency

by pre-computing slow queries and frequently used

computations.

Requirements for materialized view are:

User must use a Unity Catalog-enabled workspace

to create and refresh materialized views.

To create Databricks SQL materialized views user’s

account must be enabled to use serverless SQL

warehouses .

Create a materialized view

To create a materialized view, use the CREATE

MATERIALIZED VIEW statement. The following example

creates the materialized view materialized_view from the

base table SalesData:

CREATE MATERIALIZED VIEW materialized_view

AS SELECT

 date, sum(sales) AS sum_of_sales

FROM

 SalesData

GROUP BY

 Date

The user who creates a materialized view is the materialized

view owner and needs to have the following permissions:

SELECT privilege on the base tables referenced by

the materialized view.

USE CATALOG and USE SCHEMA privileges on the

catalog and schema containing the source tables

for the materialized view.

USE CATALOG and USE SCHEMA privileges on the

target catalog and schema for the materialized

view.

CREATE TABLE and CREATE MATERIALIZED

VIEW privileges on the schema containing the

materialized view.

Refresh a materialized view

The REFRESH operation refreshes the materialized view to

reflect the latest changes to the base table. To refresh a

materialized view, use the REFRESH MATERIALIZED VIEW

statement. Only the owner can REFRESH the materialized

view. The following example refreshes the materialized_view

materialized view:

REFRESH MATERIALIZED VIEW materialized_view

Schedule materialized view refreshes

User can configure a Databricks SQL materialized view to

refresh automatically based on a defined schedule. User can

configure this schedule with the SCHEDULE clause when

user creates the materialized view or add a schedule with

the ALTER VIEW statement.

CREATE MATERIALIZED VIEW materialzed_view

 COMMENT 'Daily sales numbers'

 SCHEDULE CRON '0 0 0 * * ? *'

 AS SELECT date AS date, sum(sales) AS sumOfSales

 FROM SalesData

 GROUP BY date;

The materialized view created above will be refreshed daily

at midnight.

Drop a materialized view

To drop a materialized view, use the DROP VIEW statement.

The following example drops the materialized_view

materialized view:

DROP MATERIALIZED VIEW materialized_view

Control access to materialized views

A materialized view owner can grant SELECT privileges to

other users. Users with SELECT access to the materialized

view do not need SELECT access to the tables referenced by

the materialized view.

To grant access to a materialized view, use

the GRANT statement:

GRANT

 privilege_type [, privilege_type] ...

 ON <mv_name> TO principal

The following example creates a materialized view and

grants select privileges to a user:

CREATE MATERIALIZED VIEW <mv_name> AS SELECT FROM <base_table>

GRANT SELECT ON <mv_name> TO user

Revoke privileges from a materialized view

To revoke access from a materialized view, use

the REVOKE statement.

REVOKE

 privilege_type [, privilege_type]

 ON <name> FROM principal

When SELECT privileges on a base table are revoked from the

materialized view owner or any other user who has been

granted SELECT privileges to the materialized view, the

materialized view owner or user granted access is still able

to query the materialized view. However, the following

behaviour occurs:

The materialized view owner or others who have

lost access to a materialized view can no

longer REFRESH that materialized view, and the

materialized view will become stale.

If automated with a schedule, the next

scheduled REFRESH fails or is not run.

The following example revokes the SELECT privilege from

materialized_view.

REVOKE SELECT ON materialized_view FROM user1;

Materialized views always return the latest snapshot version

of data available in base tables at the time of the last

refresh. Materialized view can be incrementally refreshed or

sometimes it may be full refresh as well.

Materialized view is incrementally refreshed in case of the

following conditions.

The materialized view can query only a single table

or perform an INNER JOIN and UNION ALL (or

combinations of INNER JOIN and UNION ALL) on

multiple tables.

The materialized view must have a GROUP BY in the

main select clause.

The materialized view SELECT clause supports the

following aggregate functions. Any aggregate

function not in this list is not supported:

SUM

COUNT

Incremental refresh is not supported for materialized views

that include:

Window functions.

HAVING clauses.

Subqueries in SELECT or WHERE clauses.

Materialized views cannot be created using the Delta

Lake time travel feature. LEFT JOINs and OUTER JOINs are

not supported.

Change data feed is not enabled by default on materialized

views. To enable the change data feed on a materialized

view, specify the appropriate table setting at creation time.

If user have an existing materialized view, user must drop it

and re-create it.

The following example enables change data feed on a

materialized view:

CREATE MATERIALIZED VIEW <mv_name> TBLPROPERTIES

(delta.enableChangeDataFeed = true) AS SELECT FROM <base_table>

To optimize the performance of materialized view refreshes,

Databricks uses a cost model to select the technique used

for the refresh. The following table describes these

techniques:

Technique Increment

al

refresh?

Descriptio

n

FULL_RECOMPUTE No The

materialize

d view was

fully

recomputed

NO_OP Not

applicable

The

materialize

d view was

not

updated

because no

changes to

the base

table were

detected.

ROW_BASED or

PARTITION_OVERWRITE

Yes The

materialize

d view was

incremental

ly refreshed

using the

specified

technique.

Materialized views do not support identity columns or

surrogate keys. User cannot run ad

hoc OPTIMIZE or VACUUM commands against materialized

views.

	What is Databricks
	Use cases for Azure Databricks
	Build an enterprise data Lakehouse
	ETL and Data Engineering
	Machine learning, AI, and Data science
	Data warehousing, Analytics, and BI
	Large language models and generative AI
	Data governance
	DevOps, CI/CD, and task orchestration
	Real-time and streaming analytics

	Databricks Lakehouse
	Medallion Lakehouse Architecture
	Bronze layer
	Silver Layer
	Gold Layer

	Data objects in the Databricks Lakehouse
	Databricks architecture

	Load data
	Auto Loader
	External Data

	Delta Live Tables
	Delta Live Tables datasets
	Streaming table
	Materialized view
	Views

	Create Delta live pipeline
	Pipeline update
	Schedule a pipeline
	Data quality
	Maintenance tasks
	Development and production modes
	Publish data to Hive metastore
	Publish data to Unity Catalog
	Ingest data from Unity Catalog
	Ingest streaming data from Unity Catalog table
	Ingest data from Hive metastore
	Ingest data from Auto Loader
	Share materialized views (live tables)
	Load data with Delta Live Tables
	Load files from cloud object storage
	Load data from a message bus
	Load data from Postgresql table
	Load data from JSON table

	Manage data quality with Delta Live Tables
	Delta Live Tables expectations
	Multiple expectations

	Data Transformation
	Change Data Capture
	Pipeline settings
	Product Edition
	Pipeline mode
	Storage Location
	Target schema
	Autoscaling
	Delay Compute Shutdown

	Monitor Pipelines
	Querying the event log
	Query lineage information
	Query data quality
	Monitor data backlog
	Monitor Enhanced Autoscaling events
	Monitor compute resource utilization
	Query user actions in the event log

	Structured Streaming
	Read from a data stream.
	Auto Loader to read streaming data
	Write to a data Sink
	Incremental batch write
	Read data from Delta Lake
	Write to Delta Lake
	Read data from Kafka, transform, and write to Kafka

	Using Unity Catalog with Structured Streaming
	Streaming with Delta lake
	Limit input rate
	Specify Initial position:
	Delta table as a sink
	Performing stream-static joins
	Processing results from streaming queries using foreachBatch
	Write to Azure Synapse Analytics
	Write to any location using foreachBatch
	Write to any location using foreach()
	Asynchronous progress tracking

	Apache Spark
	PySpark DataFrames
	Create a DataFrame
	Create a DataFrame from catalog table
	Load data from csv file
	Combine DataFrames with join and union
	Filter rows in a DataFrame
	Select columns from a DataFrame
	View the DataFrame
	Print the data schema
	Save a DataFrame to a table
	Run SQL queries in PySpark

	Clusters
	Cluster policy
	Cluster access mode
	Cluster Node Type
	Driver node
	Worker node
	Spot instances
	Cluster size and autoscaling
	Autoscaling local storage
	Cluster tags
	Spark configuration
	Cluster log delivery
	Personal Compute resource

	Pools
	Configure pools to control cost:
	Pre-populate pools
	Create a Pool
	Minimum Idle Instances
	Maximum Capacity
	Idle Instance Auto Termination
	Instance types
	Pool tags
	Autoscaling local storage
	Spot instances
	Delete a pool
	Databricks Container Services
	Single Node clusters
	Debugging with the Apache Spark UI
	Driver logs
	Executor logs
	Handling large queries in interactive workflows

	Databricks notebooks
	Create a Notebook
	Develop code in Databricks notebooks
	Version history
	Set default language
	Link to other notebooks
	Compute resources for notebooks
	Schedule Notebook Job
	Export and import Databricks Notebooks
	Share a notebook
	Databricks widgets
	Run a Databricks notebook from another notebook
	Unit testing for notebooks

	Databricks Workflows
	Databricks Jobs
	Databricks Jobs and Delta Live Tables
	Create & Run Job
	Run a job as a service principal
	View and manage job runs
	Share information between tasks in job
	Pass context about job runs into job tasks.
	Run tasks conditionally in an Databricks job
	Failures handled for continuous jobs

	Storage
	Connect to Azure Data Lake Storage Gen2 with Unity Catalog
	Connect to Blob Storage

	Libraries
	Workspace libraries
	Upload a Jar, Python egg, or Python wheel
	Reference an uploaded jar, Python egg, or Python wheel
	Install a workspace library onto a cluster
	Move a workspace library
	Delete a workspace library

	Cluster libraries
	Install libraries from a package repository
	Install libraries from object storage

	Databricks Repos
	Connect to a GitHub repo using a personal access token
	Add or edit Git credentials in Databricks
	Git operation with repos
	Add a repo and connect remotely later
	Clone a repo connected to a remote repo
	Access the Git dialog
	Rebase a branch on another branch

	Databricks File System (DBFS)
	Interact with files in cloud-based object storage
	Mount object storage
	DBFS root
	DBFS work with Unity Catalog
	Default Location
	FileStore

	Browse files in DBFS

	Work with Files
	Access files on the DBFS root

	Optimization & Performance
	Optimize performance with caching
	Configure disk usage
	Enable or disable the disk cache.

	Dynamic file pruning
	Low shuffle merge

	Delta Lake
	Delta Lake operations
	Create a table
	Upsert to a table
	Read a table
	Write to a table
	Update a table
	Delete from a table
	Display table history
	Time travel
	Optimize a table
	Z-order by columns
	Clean up snapshots with VACUUM
	Delta Lake table history
	Delta Lake time travel
	Restore a Delta table to an earlier state
	Vacuum unused data files
	Optimize Tables
	Z-order indexes

	Change Data Feed
	Use cases
	Enable change data feed
	Read changes in batch queries
	Read changes in streaming queries

	Table constraint
	Upsert into a Delta Lake table using merge
	Custom Metadata
	Generated columns
	Idempotent writes
	Delta Lake schema validation
	Selectively overwrite
	Update Schema
	Partitioning Tables
	Clone Delta Table
	Clone types
	Clone for data archiving

	Clone on Unity Catalog
	Create a shallow clone
	Query or modify a shallow cloned table

	Data governance
	Unity Catalog
	Unity Catalog object model
	Metastores
	Managed storage
	Catalog
	Schemas
	Tables
	Views
	Identity management for Unity Catalog
	Admin roles for Unity Catalog
	Data permissions in Unity Catalog
	Cluster access modes for Unity Catalog
	Data lineage for Unity Catalog
	Unity Catalog metastore
	Create a metastore
	Enable a workspace for Unity Catalog
	Create clusters & SQL warehouses with Unity Catalog access
	Create and manage Catalogs
	Create and manage schemas (databases)
	Create Tables
	Create views
	Manage external locations and storage credentials
	Query data
	Apply Tags
	Work with Unity Catalog and the legacy Hive metastore
	Upgrade tables and views to Unity Catalog

	Databricks SQL
	Create a SQL warehouse
	Warehouse settings
	Warehouse Types
	Monitor a SQL Warehouse
	Materialized Views

