Data Engineering =

N . e
with Databricks .

.",u-'
.

' \_i“-':".'

-

e

Perform Data Ingestion, Data Transformation, w -
Data Warehousing, Data Governance & Delta
Lake Optimization using Databricks

Sumit Verma



Contents
What is Databricks

Use cases for Azure Databricks
Build an enterprise data Lakehouse
ETL and Data Engineering
Machine learning, Al,_and Data science
Data warehousing, Analytics, and Bl
Large language models and generative Al
Data governance
DevOps, CI/CD, and task orchestration
Real-time and streaming_analytics
Databricks Lakehouse
Medallion Lakehouse Architecture
Bronze layer
Silver Layer
Gold Layer
Data objects in the Databricks Lakehouse
Databricks architecture
Load data
Auto Loader
External Data
Delta Live Tables
Delta Live Tables datasets
Streaming_table
Materialized view
Views
Create Delta live pipeline
Pipeline update
Schedule a pipeline




Data quality,
Maintenance tasks
Development and production modes
Publish data to Hive metastore
Publish data to Unity Catalog
Ingest data from Unity Catalog
Ingest streaming_data from Unity Catalog_table
Ingest data from Hive metastore
Ingest data from Auto Loader
Share materialized views (live tables),
Load data with Delta Live Tables
Load files from cloud object storage
Load data from a message bus
Load data from Postgresgl table
Load data from JSON table
Manage data quality with Delta Live Tables
Delta Live Tables expectations
Multiple expectations
Data Transformation
Change Data Capture
Pipeline settings
Product Edition
Pipeline mode
Storage Location
Target schema
Autoscaling
Delay Compute Shutdown
Monitor Pipelines
Querying_the event log
Query lineage information




Query_data quality

Monitor data backlog

Monitor Enhanced Autoscaling_events

Monitor compute resource utilization

Query user actions in the event log
Structured Streaming

Read from a data stream.

Auto Loader to read streaming_data

Write to a data Sink

Incremental batch write

Read data from Delta Lake

Write to Delta Lake

Read data from Kafka, transform, and write to Kafka

Streaming_with Delta lake
Limit input rate

Specify Initial position:

Delta table as a sink
Performing_stream-static joins

Processing_results from streaming_queries
using_foreachBatch

Write to Azure Synapse Analytics
Write to any location using_foreachBatch
Write to any location using_foreach()
Asynchronous progress tracking
Apache Spark
PySpark DataFrames
Create a DataFrame
Create a DataFrame from catalog table
Load data from csv file




Combine DataFrames with join and union
Filter rows in a DataFrame
Select columns from a DataFrame
View the DataFrame
Print the data schema
Save a DataFrame to a table
Run SQL gueries in PySpark
Clusters
Cluster policy.
Cluster access mode
Cluster Node Type
Driver node
Worker node
Spot instances
Cluster size and autoscaling
Autoscaling_local storage
Cluster tags
Spark configuration
Cluster log_delivery
Personal Compute resource
Pools
Configure pools to control cost:
Pre-populate pools
Create a Pool
Minimum lIdle Instances
Maximum Capacity
|dle Instance Auto Termination
Instance types
Pool tags
Autoscaling_local storage




Spot instances
Delete a pool
Databricks Container Services
Single Node clusters
Debugging_with the Apache Spark Ul
Driver logs
Executor logs
Handling_large queries in interactive workflows
Databricks notebooks
Create a Notebook
Develop code in Databricks notebooks
Version history
Set default language
Link to other notebooks
Compute resources for notebooks
Schedule Notebook Job
Export and import Databricks Notebooks
Share a notebook
Databricks widgets
Run a Databricks notebook from another notebook
Unit testing_for notebooks
Databricks Workflows
Databricks Jobs
Databricks Jobs and Delta Live Tables
Create & Run Job
Run a job as a service principal
View and manage job runs
Share information between tasks in job
Pass context about job runs into job tasks.
Run tasks conditionally in an Databricks job




Failures handled for continuous jobs
Storage

Connect to Azure Data Lake Storage Gen2 with Unity
Catalog

Connect to Blob Storage
Libraries
Workspace libraries
Upload a Jar, Python eqgg, or Python wheel
Reference an uploaded jar, Python egg,_or Python wheel
Install @ workspace library onto a cluster
Move a workspace library
Delete a workspace library
Cluster libraries
Install libraries from a package repository
Install libraries from object storage
Databricks Repos
Connect to a GitHub repo using_a personal access token
Add or edit Git credentials in Databricks
Git operation with repos
Add a repo and connect remotely later
Clone a repo connected to a remote repo
Access the Git dialog
Rebase a branch on another branch
Databricks File System (DBES),
Interact with files in cloud-based object storage
Mount object storage
DBFS root
DBFS work with Unity Catalog
Default Location
FileStore




Browse files in DBFS
Work with Files
Access files on the DBFS root
Optimization & Performance
Optimize performance with caching
Configure disk usage
Enable or disable the disk cache.
Dynamic file pruning
Low shuffle merge
Delta Lake
Delta Lake operations
Create a table
Upsert to a table
Read a table
Write to a table
Update a table
Delete from a table
Display table history
Time travel
Optimize a table
Z-order by columns
Clean up snapshots with VACUUM
Delta Lake table history
Delta Lake time travel
Restore a Delta table to an earlier state
Vacuum unused data files
Optimize Tables
Z-order indexes
Change Data Feed
Use cases




Enable change data feed
Read changes in batch gueries
Read changes in streaming_queries
Table constraint
Upsert into a Delta Lake table using_merge
Custom Metadata
Generated columns
Idempotent writes
Delta Lake schema validation
Selectively overwrite
Update Schema
Partitioning_Tables
Clone Delta Table
Clone types
Clone for data archiving
Clone on Unity Catalog
Create a shallow clone
Query or modify a shallow cloned table
Data governance
Unity Catalog
Unity Catalog_object model
Metastores
Managed storage
Catalog
Schemas
Tables
Views
Identity management for Unity Catalog
Admin roles for Unity Catalog
Data permissions in Unity Catalog




Cluster access modes for Unity Catalog
Data lineage for Unity Catalog

Unity Catalog_metastore
Create a metastore
Enable a workspace for Unity Catalog

Create clusters & SQL warehouses with Unity Catalog
access

Create and manage Catalogs

Create and manage schemas (databases)

Create Tables

Create views

Manage external locations and storage credentials

Query_data
Apply_Tags
Work with Unity Catalog_and the legacy Hive metastore
Upgrade tables and views to Unity Catalog
Databricks SQL
Create a SQL warehouse
Warehouse settings
Warehouse Types
Monitor a SQL Warehouse
Materialized Views




What is Databricks

Databricks is a unified set of tools for building, deploying,
sharing, and maintaining enterprise-grade data solutions at
scale. The Databrick Lakehouse platform integrates with
cloud storage for creating and deploying the cloud
infrastructure associated with Databrick workspace.

Databricks is primarily used to:

e Build and deploy data engineering workflows,
machine learning models, analytics dashboards,
and more.

e Process, store, clean, share, analyse, model, and
monetize the datasets with solutions from Bl to
generative Al.

The Azure Databricks workspace provides a unified interface
and tools for most data tasks, including:

e Data processing workflows scheduling and
management

 Generating dashboards and visualizations

e Managing security, governance, high availability,
and disaster recovery

« Data discovery, annotation, and exploration

e Machine learning (ML) modeling, tracking, and
model serving

 Generative Al solutions

In addition to the workspace Ul, user can interact with Azure
Databricks programmatically with the following tools:

« REST API
o CLI



e Terraform

User can create Azure Databrick workspace from Azure
portal. The integration is needed between the Azure
Databrick workspace and cloud account. User can configure
this integration. Azure Databricks deploys compute clusters
in the user’s cloud account to process data. Data is stored in
cloud object storage. The compute cluster consists of Virtual
machines which are provisioned in user’s cloud account.

Use cases for Azure Databricks

The following use cases highlight how organization can
leverage Azure Databricks to accomplish tasks essential to
processing, storing, and analysing the data that drives
critical business functions and decisions.

Build an enterprise data Lakehouse

The Data Lakehouse combines the strengths of enterprise
data warehouses and data lakes to accelerate, simplify, and
unify enterprise data solutions. The Databricks Lakehouse
combines the ACID transactions and data governance of
enterprise data warehouses with the flexibility and cost-
efficiency of data lakes. The Databricks Lakehouse keeps
data in massively scalable cloud object storage. The primary
components of the Databricks Lakehouse are Delta tables &
Unity Catalog. Delta Lake is an optimized storage layer that
supports ACID transactions and schema enforcement. Unity
Catalog is a unified, fine-grained governance solution for
data and Al. Delta lake & Unity Catalog will be covered in
detail in later part of the book.

Data Lakehouse often use a data design pattern that
incrementally improves, enriches, and refines data as it
moves through layers of staging and transformation. Data
Lakehouse enables business intelligence (Bl) and machine
learning (ML) on all data. Data engineers, data scientists,



analysts, and production systems can all use the data
lakehouse as their single source of truth.

ETL and Data Engineering

Databricks combines the power of Apache Spark with Delta
Lake and custom tools to provide an ETL (extract, transform,
load) pipeline. Data engineering provides data that is
available, clean, and stored in data models. User can use
SQL, Python, and Scala to compose ETL logic and then
orchestrate scheduled job deployment.

Databricks provides a number of custom tools for data
ingestion, including Auto Loader, an efficient and scalable
tool for incrementally loading data from cloud object storage
and data lakes into the data lakehouse.

Machine learning, Al, and Data science

Databricks machine learning provides a suite of tools
tailored to the needs of data scientists and ML engineers,
including MLflow and the Databricks Runtime for Machine
Learning.

Data warehousing, Analytics, and Bl

Databricks provide a powerful platform for running analytic
queries. Administrators configure scalable compute clusters
as SQL warehouses, allowing end users to execute complex
queries. Users can run queries against data in the lakehouse
using the SQL query editor or in notebooks.

Large language models and generative Al

Databricks Runtime for Machine Learning includes libraries
like Hugging Face Transformers

that allow us to integrate existing pre-trained models into
the workflow.

With Databricks, user can customize a LLM on data for a
specific task. With the support of open-source tooling, such
as Hugging Face and DeepSpeed, user can efficiently take a



foundation LLM and start training with their own data to
have more accuracy for domain and workload.

Data governance

Unity Catalog provides a unified data governance model for
the Data Lakehouse. Access control permissions are
configured for Unity Catalog. Databricks administrators can
manage permissions for teams and individuals. Privileges
are managed with access control lists (ACLs) through Uls or
SQL syntax. The lakehouse makes data sharing within
organization as simple as granting query access to a table
or view. For sharing outside of secure environment, Unity
Catalog features a managed version of Delta Sharing.

DevOps, CI/CD, and task orchestration

Databrick provides tools for versioning, automating,
scheduling, deploying code and production resources. It
simplifies monitoring, orchestration, and operations.
Databrick Workflows schedule Azure Databricks notebooks,
SQL queries, and other arbitrary code. Repos let user sync
Azure Databricks projects with a number of popular git
providers like GitHub Enterprise, Bitbucket Server, Azure
DevOps Server, and GitLab.

Real-time and streaming analytics

Azure Databricks leverages Apache Spark Structured
Streaming to work with streaming data and incremental
data changes. Structured Streaming integrates tightly with
Delta Lake. These technologies provide the foundations for
both Delta Live Tables and Auto Loader. These topics will be
covered in later part of the book.



Databricks Lakehouse

A data Lakehouse is a new, open data management
architecture that combines the flexibility, cost-efficiency,
and scale of Data Lake and ACID transactions of data
warehouses. It enables business intelligence (Bl) and
machine learning (ML) on all data.

Data Warehouse Data Lake Data Lakehouse

Data Lakehouses are enabled by combining data structures
and data management features of Data warehouse and low-
cost storage used for Data lakes. Merging data warehouse &
Data lakes together into a single system helps move data
team faster. Data Lakehouse also ensures that teams have
the most complete and up-to-date data available for data
science, machine learning, and business analytics projects.

As can be seen from the above image, Business intelligence
(BlI) and Machine learning (ML) using Data Lake required
both Data warehouse and Data lake. This increases
complexity in case of using just Data Lake.

Lakehouse provides the following key features:



e Transaction support: - It provides ACID support
which ensures consistency as multiple users
concurrently read or write data. Lakehouse uses
Delta Lake and builds upon the ACID guarantees
provided by the open-source Delta Lake protocol.
ACID stands for atomicity, consistency, isolation,
and durability.

e Schema enforcement and governance: - The
Lakehouse support schema enforcement and
evolution.

e Bl support: Lakehouse enable using Bl tools
directly on the source data. This reduces staleness
and reduces latency,

e Storage is decoupled from compute: - Storage and
compute are separated. Thus, these systems can
scale to many more concurrent users and larger
data sizes.

e Openness: - The storage formats used are open and
standardized, such as parquet. Databrick
Lakehouse provide an APl so that data can be
accessed directly from applications.

e Support for unstructured to structured data: - The
Lakehouse can be used to store, refine, analyse,
and access data types needed for many new data
applications. Data can be images, video, audio,
semi-structured data, and text.

e End-to-end streaming: - It support streaming, and
this eliminates the need for separate systems
dedicated to serving real-time data applications.

Lakehouse Delta Lake transactions use log files stored
alongside data files to provide ACID guarantees at a table
level. Because the data and log files backing Delta Lake
tables live together in cloud object storage, reading and
writing data can occur simultaneously without risk of many
queries resulting in performance degradation or deadlock.



All requests will connect to the same single copy of the
data, and they will receive the most current version of the
data at the time of query execution.

Medallion Lakehouse Architecture

The architecture provides a multi-layered approach to
building a single source of truth. This architecture
guarantees atomicity, consistency, isolation, and durability
as data passes through multiple layers of validations and
transformations before being stored in a layout optimized
for efficient analytics. The terms bronze (raw), silver
(validated), and gold (enriched) describe the quality of the
data in each of these layers.

Medallion architecture does not replace other dimensional
modelling techniques. Schemas and tables within each layer
can take on a variety of forms and degrees of normalization
depending on the frequency and nature of data updates and
the downstream use cases for the data.

Bronze layer
The bronze layer contains raw unvalidated data. Data
ingested in the bronze layer typically:

e Maintains the raw state of the data source.

e Is appended incrementally and grows over time.

e Can be any combination of streaming and batch
transactions.

Retaining the full, unprocessed history of each dataset
provides us the ability to recreate any state of a given data
system.

Silver Layer

T he silver layer represents a validated, deduplicated &
enriched version of data that can be trusted for downstream
analytics. Implementing a silver layer efficiently will



immediately unlock many of the potential benefits of the
Lakehouse.

Gold Layer

Gold data is often highly refined and aggregated, containing
data that powers analytics, machine learning, and
production applications. Gold tables represent data that has
been transformed into knowledge, rather than just
information. Gold tables are often stored in a separate
storage container.

Aggregations, joins, and filtering are handled before data is
written to the gold layer. So, users should see low latency
query performance while retrieving data from gold tables.

DELTA LAKE

Data objects in the Databricks Lakehouse

The Databricks Lakehouse organizes data stored with Delta
Lake in cloud object storage with familiar relations like
database, tables, and views. This model combines many of
the benefits of an enterprise data warehouse with the
scalability and flexibility of a data lake.

The Databricks Lakehouse architecture combines data
stored with the Delta Lake protocol in cloud object storage
with metadata registered to a metastore. The metastore
contains all of the metadata that defines data objects in the
lakehouse.

There are five primary objects in the Databricks Lakehouse.



» (Catalog: A grouping of databases. Every database is
associated with a catalog.

« Database or schema: A grouping of objects in a
catalog. Databases contain tables, views, and
functions.

 Table: A collection of rows and columns stored as
data files in object storage.

 View: A saved query typically against one or more
tables or data sources. Creating a view does not
process or write any data. Only the query text is
registered to the metastore in the associated
database. Query is executed when view is invoked.

e Function: Functions allow user to associate user-
defined logic with a database. Functions can return
either scalar values or sets of rows.

Metastore

Catalog Share Recipient Provider

Schema

Table View Volume Function Model

Databricks architecture

Databricks is structured to enable secure cross-functional
team collaboration. Many backend services are managed by
Databricks. Databricks operates out of a control plane and
a data plane.



« The control plane includes the backend services
that Databricks manages. Notebook commands and
many other workspace configurations are stored in
the control plane and encrypted at rest.

e User's cloud account manages the data plane
where data resides. This is also where data is

processed. Below is the most common architecture
for Databricks.

Databricks
Cloud Account Control Plane in Databricks Network
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Architectures can vary depending on custom configurations
like associating a virtual network with Azure Databrick
workspace for enhanced security.

Data is stored at rest in cloud account in the data plane and
in users’ own data sources. It is not stored in the control

plane. This helps maintaining control and ownership of
data.



Interactive notebook results are stored in a combination of
the control plane (partial results for presentation in the Ul)
and cloud storage. If user wants interactive notebook results
stored only in cloud account storage, interactive notebook
results in the customer account for workspace need to be
enabled. This can be done by asking Databricks
representative.



Load data

Databricks offers a variety of ways to load data into a
Lakehouse backed by Delta Lake. The different ways of
loading data are Auto Loader, Delta Live Table, COPY INTO,
external sources etc.

Auto Loader

Auto Loader incrementally processes new data files as they
arrive in cloud storage. Auto Loader can load data files from
AWS S3, Azure Data Lake Storage Gen2 (ADLS Gen2),
Google Cloud Storage, Azure Blob Storage, and Databricks
File System (DBFS, dbfs:/). Auto Loader can ingest JSON,
CSV, PARQUET, AVRO, ORC, TEXT, and BINARYFILE file
formats.

Auto Loader provides a Structured Streaming source
called cloudFiles. Given an input directory path on the cloud
file storage, the cloudFiles source automatically processes
new files as they arrive, with the option of also processing
existing files in that directory. Auto Loader has support for
both Python and SQL in Delta Live Tables.

Auto Loader can be used to process billions of files to
migrate or backfill a table. Auto Loader scales to support
near real-time ingestion of millions of files per hour. Auto
loader ensures that data is processed exactly once. It uses
checkpoint location to store the information of data
processed. In case of failures, Auto Loader can resume from
where it left off by information stored in the checkpoint
location and continue to provide exactly-once guarantees
when writing data into Delta Lake. User don’'t need to
maintain or manage any state to achieve fault tolerance or
exactly once semantics.

Databricks recommends Auto Loader whenever user uses
Apache Spark Structured Streaming to ingest data from
cloud object storage. APIs are available in Python and Scala.



In Apache Spark, files can be read incrementally using: -
spark.readStream.format(fileFormat).load(directory)

df = spark.readStream.format("cloudFiles") \
.option("cloudFiles. format", "csv") \

.option("header", "true") \

.schema(<schema>) \ # provide a schema here for the files
.load(<path>)

If the path contains many other files format then use
pathGlobfilter for filtering only those files e.q., if user would
like to parse only csv files in a directory that contains files
with different suffixes, user can do:

df = spark.readStream.format("cloudFiles") \
.option("cloudFiles.format", "csv") \
.option("pathGlobfilter", "x.csv")

.option("header", "true") \

.schema(<schema>) \ # provide a schema here for the files
. load (<path>)

When user knows schema, but wants to know whenever
user receives unexpected data, Databricks recommends
using the rescuedDataColumn. It will collect all new fields as
well as data type mismatches in _rescued_data.

df = spark.readStream.format("cloudFiles") \

.option("cloudFiles.format", "csv'") \

.option("header", "true") \

.option("rescuedDataColumn", "_rescued_data") \ # makes sure that you don't lose data
.schema(<schema>) \ # provide a schema here for the files

.load (<path>)

Auto Loader can be used with Unity Catalog. User can use
Auto Loader to ingest data from any external location
managed by Unity Catalog. User must have READ
FILES permissions on the external location. Unity Catalog
will be covered in later sections.

In the below example, the json data is read from cloud
storage and added to Unity catalog table(dev _table). The



table dev table is contained in dev_database database
which in turn is contained within dev_catalog catalog .

checkpaint_path = "abfss://dev-bucketp<storage-account>.dfs.core.windows.net/_checkpoint/dev_table"

{spark.readStream
.format("cloudFiles")
.option("cloudFiles. format", "json")
option("cloudFiles.schemalocation”, checkpoint_path)

.load("abfss://autoloader-source@<storage-account>.dfs.core.windows.net/json-data")
writeStream
.option{"checkpointLocation", checkpoint_path)

.trigger(availableNow=True)

.toTable("dev catalog.dev_database.dev_table"))

Auto Loader provides the following benefits over using
Structured Streaming on file source:

e Scalability: Auto Loader can discover billions of files
efficiently. Backfills can be performed
asynchronously.

 Performance: The cost of discovering files with Auto
Loader scales with the number of files that are
being ingested.

e Schema inference and evolution support: Auto
Loader can detect schema drifts. It can notify user
when schema changes happen and rescue data.

e Auto Loader can automatically set wup file
notification services on storage to make file
discovery much cheaper.

External Data

Databricks has built-in keyword bindings for all the data
formats natively supported by Apache Spark. Databricks
uses Delta Lake as the default protocol for reading and
writing data and tables, whereas Apache Spark uses
Parquet.

The following data formats can be used in Databrick:



Delta Lake
Delta Sharing
Parquet

ORC

JSON

CSsv

Avro

Text

Binary



Delta Live Tables

Delta Live Tables is a declarative framework for building reliable,
maintainable, and testable data processing pipelines. Delta Live
Tables manages task orchestration, cluster management, monitoring,
data quality, and error handling. Users define the transformations to
perform on data.

In Delta Live Tables pipeline, streaming tables and materialized views
are defined. Delta Live Tables transforms data based on queries
defined for each processing step. Data quality is enforced using
Delta Live Tables expectations, which allow to define expected data
quality and specify how to handle records that fail those
expectations.

Delta Live Tables datasets are the streaming tables, materialized
views, and views.

Delta Live Tables datasets

Streaming table

A streaming table is a Delta table which supports streaming or
incremental data processing. Streaming tables allow to process a
growing dataset, handling each row only once. Streaming tables are
good for most ingestion workloads because most datasets grow
continuously over time. Streaming tables provides data freshness
and low latency. Streaming table is quite useful for massive scale
transformations, as results can be incrementally calculated as new
data arrives, keeping results up to date without needing to fully
recompute all source data with each update. Streaming tables are
designed for data sources that are append-only.

Materialized view

A materialized view (or live table) is a view where the results have
been precomputed. Materialized views are powerful because they
can handle any changes in the input. Each time the pipeline
executes, query results are recalculated to reflect changes in source
datasets. Delta Live Tables implements materialized views as Delta
tables.

Views
Views in Azure Databricks compute results from source datasets as
they are queried. It leverages caching optimization. Delta Live Tables



does not publish views to the catalog, so views can be referenced
only within the pipeline in which they are defined. Views are useful
as intermediate queries. Databricks recommends using views to
enforce data quality constraints, transform and enrich datasets.

Dataset type How are records processed
through defined queries?

Streaming table Each record is processed exactly
once. This assumes an append-
only source.

Materialized views Records are processed as

required to return accurate
results for the current data state.
Materialized views should be
used for data sources with
updates, deletions, or
aggregations, and for change
data capture processing (CDC).

Views Records are processed each time
the view is queried. Use views for
intermediate transformations and
data quality checks that should
not be published to public
datasets

SQL syntax can be used to declare a dataset with Delta Live Tables.
Databricks recommends Delta Live Tables with SQL as the preferred
way for SQL users to build new ETL, ingestion, and transformation
pipelines. It allows users to declare dependencies between datasets.
This ensures that updates occur in the correct order.

User can use notebooks or SQL files to write Delta Live Tables SQL
queries. The below code declares a Delta Live Tables pipeline on a
dataset containing Wikipedia clickstream data to:

. Read the raw JSON clickstream data into a raw data table.

« Read the records from the raw data table and use Delta
Live Tables expectations to create a new table that contains
cleansed data.



« Use the records from the cleansed data table to make Delta
Live Tables queries that create derived datasets.

The following example creates a table by loading data from JSON
files stored in object storage:

Using SQL.:

CREATE OR REFRESH LIVE TABLE clickstream_raw
COMMENT "The raw wikipedia clickstream dataset, ingested from datasets."
AS SELECT * FROM json." /databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-

uncompressed-json/2015 2 clickstream.json’;

Using Python:
import dlt

from pyspark.sql.functions import *

json_path = "/databricks-datasets/wikipedia-datasets/data-001/clickstream/raw-

uncompressed-json/2015 2 clickstream.json"

@dlt.table(

comment="The raw wikipedia clickstream dataset, ingested from datasets."
)
def clickstream_raw():

return (spark.read.format("json").load(json_path))

User can declare new table that queries from other datasets (like
above live table). This creates a dependency that Delta Live Tables
automatically resolves before executing updates. The following code
creates another Live table which refers to the above created table. It
also includes examples of monitoring and enforcing data quality with
expectations.

Using SQL.:

CREATE OR REFRESH LIVE TABLE clickstream_prepared(

CONSTRAINT valid_current_page EXPECT (current_page_title IS NOT NULL)

)

COMMENT "Wikipedia clickstream data cleaned and prepared for analysis."
AS SELECT



curr_title AS current_page _title,
CAST(n AS INT) AS click_count,
prev_title AS previous_page_title

FROM live.clickstream_raw;

Using Python:
@dlt.table(
comment="Wikipedia clickstream data cleaned and prepared for analysis."
)
@dlt.expect("valid_current_page_title", "current_page_title IS NOT NULL")
def clickstream_prepared():
return (
dit.read("clickstream_raw")
.withColumn("click_count", expr("CAST(n AS INT)"))
.withColumnRenamed("curr_title", "current_page_title")
.withColumnRenamed("prev _title", "previous page_title")

.select("current_page_title", "click_count", "previous_page _title")

The above live table refers to earlier created Ilive
table(clickstream_raw). It also enforces the data constraint on the
column current_page _title.

Live tables are equivalent conceptually to materialized views. The
traditional views execute logic each time the view is queried but live
tables store the most recent version of query results in data files.

User can declare highly enriched views that power dashboards, Bl,
and analytics by declaring tables with specific business logic. The
following code creates an enriched materialized view from the
clickstream_prepared table.

Using SQL :

CREATE OR REFRESH LIVE TABLE top_spark_referers

COMMENT "A table containing the top pages linking to the Apache Spark page."
AS SELECT

previous_page_title as referrer,

click_count

FROM live.clickstream_prepared



WHERE current_page_title = 'Apache_Spark'
ORDER BY click_count DESC
LIMIT 10;

Using Python:
@dlt.table(
comment="A table containing the top pages linking to the Apache Spark page."
)
def top_spark_referrers():
return (
dit.read("clickstream_prepared")
filter(expr("current_page _title == 'Apache_Spark™))
.withColumnRenamed("previous_page_title", "referrer")
.sort(desc("click_count"))
.select("referrer", "click_count")
dimit(10)
)

The above codes can be put in Databrick notebook which can be
scheduled to execute from Delta Live Table pipeline.

If user needs to calculate intermediate tables that are not intended
for external consumption, user can prevent them from being
published to a schema using the TEMPORARY keyword. Temporary
tables still store and process data according to Delta Live Tables
semantics but should not be accessed outside of the current
pipeline.

To declare temporary table:

CREATE TEMPORARY LIVE TABLE temp_table
AS SELECT ...;

Create Delta live pipeline

User can configure Delta Live Tables pipelines and trigger updates
using the Databricks workspace Ul or automated tooling options such
as the API and CLI.

To create the pipeline:



. Click Workflows in the Databricks workspace Ul sidebar,
click the Delta Live Tables tab, and click Create Pipeline.

. Specify the pipeline name, product edition, pipeline mode
and other details. The pipeline mode is continuous or
triggered.

Create pipeline

General

Triggered pipelines update once and then shut down the cluster
until the next manual or scheduled update. Continuous
pipelines keep an always running cluster that ingests new data
as it arrives. This property can be changed as requirements
evolve.

To avoid unnecessary processing in continuous execution mode,
pipelines automatically monitor dependent Delta tables and
perform an update only when the contents of those dependent
tables have changed.

Triggered pipelines can reduce resource consumption and
expense. However, new data won’t be processed until the
pipeline is triggered. Continuous pipelines require an always-
running cluster, which is more expensive but reduces
processing latency.

The following table highlights differences between these
execution modes:

Triggered Continuous
When does the Automatically once | Runs continuously
update stop? complete. until manually
stopped.
What data is Data available All data as it
processed? when the update is | arrives at




started. configured
sources.
What data Data updates run Data updates
freshness every 10 minutes, | desired between
requirements is hourly, or daily. every 10 seconds
this best for? and a few
minutes.

« Choose the notebook path that user wants to run as part of
this pipeline. This notebook contains the live table datasets
definitions. For each dataset, Delta Live Tables compares
the current state with the desired state and proceeds to
create or update datasets.

« Choose the destination by specifying a Target schema to
publish dataset to the Hive metastore or a Catalog and
a Target schema to publish the dataset to Unity Catalog.

_! Hive Metastare o Unity Catalog  Preview

If user does not specify a target for publishing data, tables
created in Delta Live Tables pipelines can only be accessed by
other operations within that same pipeline.

« Define the cluster policy where user specifies the
autoscaling options.

« Click Notifications to configure one or more emalil
addresses to receive notifications for pipeline events.
Notifications will be sent when the following occurs:

o A pipeline update completes successfully.
o Each time a pipeline update fails.
o A single data flow fails.

Data access permissions are configured through the cluster used for
execution. Make sure that cluster has appropriate permissions
configured for data sources and the target storage location.



Once a pipeline is configured, user can trigger a pipeline update to
calculate results for each dataset in pipeline.

Pipeline update

Once user creates a pipeline and are ready to run it, user starts
an update. This is starting the pipeline. To start an update for a
pipeline, click the “Start” button in the top panel. The system returns
a message confirming that the pipeline is starting.

After successfully starting the pipeline, the Delta Live Table system:

. Starts a cluster using the defined cluster configuration.

« Creates tables that don’t exist and ensures that the schema
is correct for any existing tables.

. Updates tables with the latest data available.

« Shuts down the cluster when the update is complete.

Pipelines can be run continuously or on a schedule depending on
cost and latency requirements.

The tables and views updated. Tables and views are updated based
on the update type:

« Refresh all: All live tables are updated to reflect the current
state of their input data sources. For all streaming tables,
new rows are appended to the table.

« Full refresh all: All live tables are updated to reflect the
current state of their input data sources. For all streaming
tables, Delta Live Tables attempts to clear all data from
each table and then load all data from the streaming
source.

« Refresh selection: The behaviour of refresh selection is
identical to refresh all but allows us to refresh only selected
tables. For selected streaming tables, new rows are
appended to the table.

« Full refresh selection: The behaviour of full refresh
selection is identical to full refresh all but allows to perform
a full refresh of only selected tables.



User can use selective refresh with only triggered pipelines.

Schedule a pipeline
User can start a triggered pipeline manually or run the pipeline on a
schedule with an Azure Databricks job.

To create a single-task job and a schedule for the job in the Delta
Live Tables Ul:

« Click Schedule > Add a schedule.

« Enter a name for the job in the Job name field.

« Set the Schedule to Scheduled.

. Specify the period, starting time, and time zone.

. Configure one or more email addresses to receive alerts on
pipeline start, success, or failure.

« Click Create.

User can run a Delta Live Tables pipeline as part of a data processing
workflow with Apache Airflow, or Azure Data Factory. User can call
Delta Live Tables APl from an Azure Data Factory Web activity to
trigger the pipeline from Azure Data factory.

Data quality

User can use expectations to specify data quality controls on the
contents of a dataset. Expectations are optional clauses user adds to
Delta Live Tables dataset declarations that apply data quality checks
on each record passing through a query.

Maintenance tasks

Delta Live Tables performs maintenance tasks within 24 hours of a
table being updated. Maintenance can improve query performance
and reduce cost by removing old versions of tables. System performs
a full OPTIMIZE operation followed by VACUUM. User can disable
OPTIMIZE for a table by
setting pipelines.autoOptimize.managed = false in the table
properties for the table. Maintenance tasks are performed only if a
pipeline update has run in the 24 hours before the maintenance
tasks are scheduled.

Development and production modes



Pipeline execution can be optimized by switching between
development and production modes. Use the Development or
production buttons in the Pipelines Ul to switch between
Development or production modes. By default, pipelines run in
development mode.

When pipeline is run in development mode, the Delta Live Tables
system does the following:

« Reuses a cluster to avoid the overhead of restarts. By
default, clusters run for two hours when development mode
is enabled. To change the value, user can define
pipelines.clusterShutdown.delay setting in the configuration
of compute settings as shown below. In the figure below,
the cluster shutdown has been configured to 60 seconds.

1SON [y copy

"configuration": {
"nipalines. clusterShutdown.delay”: "cas"

« Disables pipeline retries so user can immediately detect
and fix errors.

In production mode, the Delta Live Tables system does the following:

« Restarts the cluster for specific recoverable errors, including
memory leaks and stale credentials.

. Retries execution in the event of specific errors, e.g., a
failure to start a cluster.

e In production mode, the default value for
pipelines.clusterShutdown.delay is 0 seconds. Cluster is
always running.

Switching between development and production modes only affects
cluster and pipeline execution behaviour. Storage locations and

target schemas in the catalog for publishing tables are not affected
when switching between modes.



Publish data to Hive metastore

The output data of pipeline can be published to the Hive
metastore. To publish datasets to the metastore, enter a schema
name in the Target field when user creates a pipeline. User can also
add a target database to an existing pipeline.

By default, all tables and views created in Delta Live Tables are local
to the pipeline. User must publish tables to a target schema to query
or use Delta Live Tables datasets (created outside the pipeline).

If user needs to calculate intermediate tables that are not intended
for external consumption, user can prevent them from being
published to a schema using the TEMPORARY keyword. Temporary
tables still store and process data according to Delta Live Tables
semantics, but can't not be accessed outside of the current
pipeline. User can define the temporary table in SQL like:

CREATE TEMPORARY LIVE TABLE temp_table
A5 SELECT. v

In python, the temporary tables can be defined like: -

@dlt.table(
temporary=True)

def temp_table():
return. ("...")

Publish data to Unity Catalog
Unity Catalog can be used with Delta Live Tables pipelines to:

. Define a catalog in Unity Catalog where pipeline will persist
data.
. Read data from Unity Catalog tables.

A single pipeline cannot write to both the Hive metastore and Unity
Catalog and existing pipelines cannot be upgraded to use Unity
Catalog. Existing pipelines that use the Hive metastore cannot be
upgraded to use Unity Catalog. To migrate an existing pipeline that
writes to Hive metastore, a new pipeline must be created and data
need to be re-ingested from the data source.



To create tables in Unity Catalog from a Delta Live Tables pipeline,
user must have USE CATALOG privileges on the target catalog,
CREATE TABLE and USE SCHEMA privileges in the target schema.
User must have CREATE MATERIALIZED VIEW and USE
SCHEMA  privileges in the target schema if pipeline
creates materialized views.

When Delta Live Table is configured to persist data to Unity Catalog,
the lifecycle of the table is managed by the Delta Live Tables
pipeline.

. When a table is removed from the Delta Live Tables pipeline
definition, the corresponding materialized view or
streaming table entry is removed from Unity Catalog on the
next pipeline execution. The actual data is retained for a
period so that it can be recovered if it was deleted by
mistake. The data can be recovered by adding the
materialized view or streaming table back into the pipeline
definition.

. Deleting the Delta Live Tables pipeline results in deletion of
all tables defined in that pipeline. Because of this change,
the Delta Live Tables Ul is updated to prompt user to
confirm deletion of a pipeline.

To write tables to Unity Catalog, while creating pipeline, select Unity
Catalog under Storage options, select a catalog in
the Catalog dropdown menu, and provide a database name in
the Target schema field.

Ingest data from Unity Catalog

Pipeline configured to use Unity Catalog can read data from Unity
Catalog managed and external tables, views, materialized views and
streaming tables.

Using SQL.:
CREATE OR REFRESH LIVE TABLE

table_name



AS SELECT
*
FROM

my_catalog.my_schema.tablel;

Using Python:
@dlt.table
def table_name():

return spark.table("my_catalog.my _schema.table")

Ingest streaming data from Unity Catalog table
In case of streaming changes, the stream can be read.

Using SQL.:

CREATE OR REFRESH STREAMING TABLE
table_name

AS SELECT
*

FROM
STREAM(my_catalog.my_schema.tablel);

Using Python:
@dlt.table
def table_name():

return spark.readStream.table("my catalog.my schema.table")

Ingest data from Hive metastore
A pipeline that uses Unity Catalog can read data from Hive metastore
tables using the hive_metastore catalog.

Using SQL.:
CREATE OR REFRESH LIVE TABLE

table_name
AS SELECT

*

FROM

hive_metastore.my_schema.table;



Using Python:
@dlt.table
def hivetable():

return spark.table("hive_metastore.my_schema.table")

Ingest data from Auto Loader
The streaming data can be ingested using Auto loader.
SQL:
CREATE OR REFRESH STREAMING TABLE
table_name
AS SELECT
*
FROM
cloud_files(
<path-to-uc-external-location>,
"json"

)

Python:

@dlt.table(table_properties={"quality": "bronze"})
def table_name():
return (
spark.readStream.format("cloudFiles")
.option("cloudFiles.format", "json")

Joad(f"{path_to_uc_external _location}")

Share materialized views (live tables)

The tables created by a pipeline can be queried only by the pipeline
owner. Other users can be given the ability to query a table by
using GRANT statements. Access can be revoked using
REVOKE statements.

To grant select on table:
GRANT SELECT ON TABLE

my_catalog.my_schema.live_table



TO

‘user@abc.com”

To revoke the access:
REVOKE SELECT ON TABLE

my_catalog.my_schema.live_table
FROM

‘user@abc.com’

To grant create table privileges, it can be done through:
GRANT CREATE TABLE ON SCHEMA

my_catalog.my_schema
TO

‘user@abc.com”

To grant create materialized view privileges, it can be done through:
GRANT CREATE MATERIALIZED VIEW ON SCHEMA

my_catalog.my_schema
TO

‘user@abc.com”

Load data with Delta Live Tables

User can load data from any data source supported by Apache Spark
on Databricks using Delta Live Tables. User can define datasets
(tables and views) in Delta Live Tables against any query that returns
a Spark DataFrame.

Load files from cloud object storage

Databricks recommends using Auto Loader with Delta Live Tables for
most data ingestion tasks from cloud object storage. Auto Loader
and Delta Live Tables are designed to incrementally load ever-
growing data as it arrives in cloud storage. The following examples
use Auto Loader to create datasets from CSV and JSON files:

Using SQL.:

CREATE OR REFRESH STREAMING TABLE customers
AS SELECT * FROM cloud_files("/databricks-datasets/retail-org/customers/", "csv")



CREATE OR REFRESH STREAMING TABLE sales_orders_raw
AS SELECT * FROM cloud_files("/databricks-datasets/retail-org/sales_orders/", "json")

Using Python:-
@dlt.table
def customers():
return (
spark.readStream.format("cloudFiles")
.option("cloudFiles.format", "csv")

Jload("/databricks-datasets/retail-org/customers/")

@dlt.table
def sales_orders_raw():
return (
spark.readStream.format("cloudFiles")
.option("cloudFiles.format", "json")

Jload("/databricks-datasets/retail-org/sales_orders/")

Load data from a message bus

User can configure Delta Live Tables pipelines to ingest data from
message buses with streaming tables. The following code configures
a streaming table to ingest data from Kafka:

import dlt

@dlt.table

def kafka_raw():

return (
spark.readStream

format("kafka")
.option("kafka.bootstrap.servers", "<server:ip>")
.option("subscribe", "topicl")
.option("startingOffsets", "latest")
Jload()



)
User can write subsequent operations in pure SQL to perform
streaming transformations on this data as shown below:
CREATE OR REFRESH STREAMING TABLE streaming_silver table
AS SELECT
*
FROM
STREAM(LIVE.kafka_raw)
WHERE ...
Load data from Postgresql table

The following example declares a materialized view to access the
current state of data in a remote Postgresql table.

import dlt
@dlt.table
def postgres_raw():
return (
spark.read
format("postgresql")
.option("dbtable", table_name)
.option("host", database_host_url)
.option("port", 5432)
.option("database", database _name)
.option("user", username)
.option("password", password)
Jload()
)

Load data from JSON table

The following example demonstrates loading JSON to create Delta
Live Tables.

Using SQL.:

CREATE OR REFRESH LIVE TABLE clickstream_raw

AS SELECT * FROM json." /databricks-datasets/.../2015_2 clickstream.json’

Using Python:
@dlt.table



def clickstream_raw():

return (spark.read.format("json").load("/databricks-datasets/... /2015 2 clickstream.json"))

For direct file access using SQL with Delta Live Tables, user can use
command like shown below. This SQL construct is common to all SQL
environments on Databricks.

SELECT * FROM format. path”

Manage data quality with Delta Live Tables

Expectations are used to define data quality constraints on the
contents of a dataset. Expectations provide guarantee that data
arriving in tables meets data quality requirements. Expectations can
be applied using Python decorators or SQL constraint clauses.

Delta Live Tables expectations

Expectations are optional clauses that can be added to Delta Live
Tables dataset declarations. Expectations apply data quality checks
on each record passing through a query.

An expectation consists of three things:

« A description, which acts as a unique identifier and allows
to track metrics for the constraint.

. A boolean statement that always returns true or false based
on some stated condition.

. An action to take when a record fails the expectation,
meaning the boolean returns false.

User can apply three actions on invalid records:

« warn(default): Invalid records are written to the target.
Failure is reported as a metric for the dataset.

« drop: Invalid records are dropped before data is written to
the target. Failure is reported as a metrics for the dataset,

. fail: Invalid records prevent the update from succeeding.
Manual intervention is required before re-processing.

Data quality metrics such as the number of records can be viewed
that violate an expectation by querying the Delta Live Table event

log.



« Retail invalid records: Use the expect operator when user
wants to keep records that violate the expectation. Records
that violate the expectation are added to the target dataset
along with valid records.

Using Python:
@dlIt.expect("valid timestamp”, "col(“timestamp”) > '2012-01-01"")
Using SQL.:
CONSTRAINT valid_timestamp EXPECT (timestamp > '2012-01-01")

« Drop Invalid records: Use the expect or drop operator to
prevent further processing of invalid records. Records that
violate the expectation are dropped from the target
dataset.

Using SQL.:
CONSTRAINT valid_current_page EXPECT (current_page_id IS NOT NULL and
current_page_title IS NOT NULL) ON VIOLATION DROP ROW

Using python:
@dlt.expect_or_drop("valid_current_page", "current_page_id IS NOT NULL AND
current_page_title IS NOT NULL")

« Fail on invalid records:

When invalid records are unacceptable, use
the expect or fail operator to stop execution immediately when
a record fails validation. If the operation is a table update, the
system atomically rolls back the transaction.

Using Python:
@dlt.expect_or_fail("valid_count", "count > 0")
Using SQL.:
CONSTRAINT valid_count EXPECT (count > 0) ON VIOLATION FAIL UPDATE
When a pipeline fails because of an expectation violation, User

must fix the pipeline code to handle the invalid data correctly
before re-running the pipeline.



Multiple expectations
User can define expectations with one or more data quality
constraints in Python pipelines.

. expect all: Use expect all to specify multiple data quality
constraints when records that fail validation should be
included in the target dataset.

- expect all or drop:- Use expect all or drop to specify
multiple data quality constraints when records that fail
validation should be dropped from the target dataset:

. expect all or fail : Use expect _all _or fail to specify multiple
data quality constraints when records that fail validation
should halt pipeline execution.

valid_pages = {"valid_count": "count > 0", "valid_current_page": "current_page_id IS
NOT NULL AND current_page _title IS NOT NULL"}

@dlt.table
@dlt.expect_all(valid_pages)
def raw_data():

# Create raw dataset

@dlt.table
@dlt.expect_all or_drop(valid_pages)
def prepared_data():

# Create cleaned and prepared dataset)

In the example above, user is ingesting raw data through
raw_data() table where user is ingesting all data even if the
condition fails of validation. In the next live table, the table
prepared_data is taking only the data which is validated.

Data Transformation

Apache Spark built-in operations, UDFs and custom logic can be used
as transformations in Delta Live Tables pipeline. After transformation,
user can create new streaming tables, materialized views, and views.
Output of transformation are views, materialized views, and
streaming tables.



To ensure pipelines are efficient and maintainable, user should
choose the best dataset type while implementing pipeline queries.

User should go for view when:

User have a large or complex query that user wants to
break into easier-to-manage queries.

User wants to validate intermediate results using
expectations.

User wants to reduce storage and compute costs and do
not require the materialization of query results. Views are
computed on demand. The view is re-computed every time
the view is queried.

User should go for materialized view when:

Materialized views are especially useful in situations where
complex queries or aggregations are performed frequently,
and the underlying data changes infrequently. By storing
the pre-computed results, the database can avoid the need
to execute complex queries repeatedly, resulting in faster
response times. This precomputation of data allows for
faster query response times and improved performance in
certain scenarios.

Materialized view can be consumed by other pipelines, jobs
& queries because a materialized view is a database object
that stores the results of a query as a physical table.

User should go for streaming table when:

A query is defined against a data source that s
continuously or incrementally growing.

Query results should be computed incrementally.

High throughput and low latency are desired for the
pipeline.

User can combine streaming tables and materialized views in a
single pipeline. In streaming tables, where new rows are always
inserted into the source table rather than modified.



A common streaming pattern includes ingesting source data to
create the initial datasets in a pipeline. These initial datasets are
commonly called bronze tables and often perform simple
transformations. By contrast, the final tables in a pipeline, commonly
referred to as gold tables, often require complicated aggregations.
These transformations are better suited for materialized views.

The following examples illustrates streaming Bronze, streaming
Silver & materialized view gold table.

@dlt.table
def streaming_bronze():
return (
# Since this is a streaming source, this table is incremental.
spark.readStream.format("cloudFiles")
.option("cloudFiles.format", "json")

Joad("abfss://path_to raw_data")

@dlt.table

def streaming_silver():
# Since user read the bronze table as a stream, this silver table is also
# updated incrementally.

return dlt.read_stream("streaming_bronze").where(...)

@dlt.table
def live_gold():

# This table will be recomputed completely by reading the whole silver table when it is
updated.

Return dlt.read("streaming_silver").groupBy("user _id").count()

As can be seen from the above example, the streaming_bronze live
table takes data from stream source. The silver live table
streaming_silver takes data from streaming _bronze live table. The
gold live table live_gold is not streaming. It is updated based on data
of whole silver table. The live_gold table is materialized view. The



Gold table inherently create updates rather than append so they are
not supported as streaming tables.

The same can be implemented using SQL as shown below:

CREATE OR REFRESH STREAMING TABLE streaming_bronze
AS SELECT * FROM cloud_files(

"abfss://path_to_raw_data", "json"

)

CREATE OR REFRESH STREAMING TABLE streaming_silver
AS SELECT * FROM STREAM(LIVE.streaming_bronze) WHERE...

CREATE OR REFRESH LIVE TABLE live_gold
AS SELECT count(*) FROM LIVE.streaming_silver GROUP BY user _id

The streaming table can be joined with any static dimension table to
get more information as shown below.

Using SQL.:
CREATE OR REFRESH STREAMING TABLE customer_sales

AS SELECT * FROM STREAM(LIVE.sales)
INNER JOIN LEFT LIVE.customers USING (customer_id)

Using Python:
@dlt.table

def customer_sales():

return dlt.read_stream("sales").join(read("customers"), ["customer_id"], "left")

User can use streaming tables to incrementally calculate simple
distributive aggregates like count, min, max, or sum, and algebraic
aggregates like average or standard deviation.

Change Data Capture

User can use change data capture (CDC) in Delta Live Tables to
incrementally update tables based on changes in source data. CDC is
supported in the Delta Live Tables. Delta Live Tables supports
updating tables with slowly changing dimensions (SCD) type 1 and
type 2.



« SCD type 1 is used to update records directly. History is not
retained for records that are updated.

« SCD type 2 is used to retain a history of records, either on
all updates or on updates to a specified set of columns.

Change data capture will be discussed in detail in later chapters.

Pipeline settings

Delta Live Tables provides a user interface for configuring and editing
pipeline settings. The Ul also provides an option to display and edit
settings in JSON. Some advanced options are only available using the
JSON configuration. The following are some of the pipeline settings
that can be configured by user.

Product Edition
The following product editions are available.

« Core: - Select core to run streaming ingest workloads.
Select the Core edition if pipeline doesn’t require advanced
features such as change data capture (CDC) or Delta Live
Tables expectations.

e Pro: - Select Pro to run streaming ingest and change data
capture (CDC) workloads. The Pro product edition supports
all the Core features, plus support for workloads that
require updating tables based on changes in source data.

« Advanced: - Select Advanced to run streaming ingest
workloads, change data capture (CDC) workloads, and
workloads that require expectations. The Advanced product
edition supports the features of the Core and Pro editions
and supports enforcement of data quality constraints with
Delta Live Table expectations.

Pipeline mode

User can choose to update pipeline continuously or with manual
triggers. If the pipeline uses the triggered execution mode, the
system stops processing after successfully refreshing all tables or
selected tables in the pipeline.

If the pipeline uses continuous execution, Delta Live Tables processes
new data as it arrives in data sources to keep tables throughout the
pipeline fresh.



Both materialized views and streaming tables can be updated in
either execution mode.

Storage Location

User must specify storage location for a pipeline that publishes to
the Hive metastore. The primary motivation for specifying a location
is to control the object storage location for data written by pipeline.

All tables, data, checkpoints, and metadata for Delta Live Tables
pipelines are fully managed by Delta Live Tables. Most interaction
with Delta Live Tables datasets happens through tables registered to
the Hive metastore or Unity Catalog.

Target schema

While optional, User should specify a target to publish tables created
by pipeline. Publishing a pipeline to a target makes datasets
available for querying elsewhere in Databricks environment. User
can define target schema in Hive metastore or unity catalog.

Autoscaling

Use Enhanced Autoscaling to optimize the cluster utilization of
pipelines. Enhanced Autoscaling adds additional resources only if the
system determines those resources will increase pipeline processing
speed. Resources are freed when they are no longer needed, and
clusters are shut down as soon as all pipeline updates are complete.

While configuring Enhanced Autoscaling for production pipelines:

« Leave the Min workers setting at the default.
. Set the Max workers setting to a value based on budget and
pipeline priority.

Delay Compute Shutdown

Delta Live Tables cluster automatically shuts down when not in use.
To control cluster shutdown behaviour, user can
use pipelines.clusterShutdown.delay setting in the pipeline configuration.
The following example sets the pipelines.clusterShutdown.delay value to 60
seconds.

{
"configuration": {
"pipelines.clusterShutdown.delay": "60s"

}



}

When production mode is enabled, the default value for
pipelines.clusterShutdown.delay is 0 seconds. When development
mode is enabled, the default value is 2 hours.

Monitor Pipelines

User can use built-in features in Delta Live Tables for monitoring and
observability for pipelines, including data lineage, update history,
and data quality reporting. Most monitoring data can be reviewed
manually through the pipeline details Ul. Some information can be
found by querying the event log metadata.

The pipeline graph displays as soon as an update to a pipeline has
successfully started. Dependencies between datasets in pipeline are
represented by arrows. Details displayed include the pipeline ID,
source libraries, compute cost, product edition, Databricks Runtime
version, and the channel configured for the pipeline. The Run as user
is the pipeline owner.

To receive real-time notifications for pipeline events like successful
completion of a pipeline update or failure of a pipeline update, user
can add email notifications for pipeline events.

The Delta Live Tables event log contains all information related to a
pipeline, including audit logs, data quality checks, pipeline progress,
and data lineage. User can use the event log to track, understand,
and monitor the state of data pipelines.

User can view event log entries in the Delta Live Tables user
interface, the Delta Live Tables API, or by directly querying the
event log.

Querying the event log

The location of the event log and the interface to query the event log
depend on whether pipeline is configured to use the Hive metastore
or Unity Catalog.

« Hive Metastore: |If pipeline publishes tables to the Hive
metastore, the event log is stored in /system/events under
the storage location. If user has configured pipeline storage
setting as /Users/username/data, the event log is stored in
the /Users/username/data/system/events path in DBFS.



If user has not configured the storage setting, the default event
log location is /pipelines/<pipeline-id>/system/events in DBFS
e.g., if the ID of pipeline is 91de5e48-35ed-11ec-1d4d-0242ac130003, the
storage location is:
/pipelines/91de5e48-35ed-11ec-1d4d-0242ac130003/system/events .

User can create a view to simplify querying the event log like
shown below:

CREATE OR REPLACE TEMP VIEW event_log_raw AS SELECT * FROM delta.” <event-log-
path>"

Specify event log location in event-log-path. This creates
event log raw temporary view. From the view, user can query
and get details about various events.

« Unity Catalog: If pipeline publishes tables to Unity Catalog,
user must use the event log table valued function (TVF) to
fetch the event log for the pipeline. User can retrieve the
event log for a pipeline by passing the pipeline ID or a table
name to the TVF. To retrieve the event log records for the
pipeline with ID, use the command like shown below. Pipeline
id should be provided as part of event log parameter.

SELECT * FROM event log("04c78631-3dd7-
4856-b2a6-7d84e9b2638b")

If user doesn’t know the pipeline id but wants to get the
event log of the pipeline that created or owns table
my_catalog.my_schema.tablel, then use the below command where
table name is provided as input.

SELECT * FROM event log(TABLE(my catalog.my_schema.tablel))

To call event_log function, user must use shared cluster or a

SQL warehouse. So, queries

should be called as shown above from the notebook attached

to a shared cluster or use the

SQL editor connected to a SQL warehouse. The event _log TVF

can be called only by the

pipeline owner. So, to simplify querying events for a pipeline,

the owner of the pipeline can

create a view over the event log function.



CREATE VIEW event_log_raw AS SELECT * FROM event_log("<pipeline-ID>")

Query lineage information

Events containing information about lineage have the event type
flow_definition. The details:flow_definition object contains the
output _dataset and input_datasets defining each relationship in the
graph. The below query provides the lineage information.

SELECT
details:flow_definition.output dataset as output dataset,
details:flow_definition.input_datasets as input_dataset
FROM
event_log_raw
WHERE

event_type = 'flow_definition’

event log _raw has been created in the previous section.

Query data quality

If user defines expectations on datasets in pipeline, the data quality
metrics are stored in the details:flow_progress.data_quality.expectations Object.
Events containing information about data quality have the event
type flow_progress .

Monitor data backlog

Delta Live Tables tracks how much data is present in the backlog in
the details:flow_progress.metrics.backlog_bytes 0object. Events containing
backlog metrics have the event type flow progress. User can retrieve
the backlog data through the below query.

SELECT

timestamp,

Double(details :flow_progress.metrics.backlog_bytes) as backlog
FROM

event_log_raw
WHERE

event_type ='flow_progress'

Monitor Enhanced Autoscaling events
The event log captures cluster resizes when Enhanced Autoscaling is
enabled in pipeline. Events containing information about Enhanced



Autoscaling have the event type autoscale. The cluster resizing
request information is stored in the details:autoscale oObject

Monitor compute resource utilization

Cluster_resources event provides metrics on the number of task slots
in the cluster, how much those task slots are utilized, and how many
tasks are waiting to be scheduled.

When Enhanced Autoscaling is enabled, cluster resources events
also contain metrics for the autoscaling algorithm,
including latest_requested num_executors and
optimal_num_executors.

The following example queries the task queue size history
SELECT

timestamp,

Double(details :cluster_resources.avg num_queued_tasks) as queue_size
FROM

event_log_raw
WHERE

event_type = 'cluster_resources'

User can query many metrics like:

« avg_task slot_utilization

« num_executors

. latest requested num_executors
« optimal_num_executors

. state

Query user actions in the event log

User can use the event log to audit events. Events containing
information about user actions have the event type user action.
Information about the action is stored in the user_action object in the

details field.



SELECT timestamp, details:user_action:action, details:user_action:user name FROM

event_log_raw WHERE event_type = 'user_action'

timestamp action user_name
12021-05-20T19:36:03.517+0000 START user@abc.com
22021-05-20T719:35:59.913+4+0000 CREATE user@abc.com
32021-05-277T00:35:51.971+0000 START user@abc.com

User can view runtime information for a pipeline update, for
example, the Databricks Runtime version for the update.

SELECT details:create_update:runtime_version:dbr_version FROM event_log_raw WHERE

event_type = 'create_update'



Structured Streaming

User can use Databricks for near real-time data ingestion,
processing, machine learning, and Al for streaming data.
Databricks offers numerous optimizations for streaming and
incremental processing. For most streaming or incremental
data processing or ETL tasks, Databricks recommends Delta
Live Tables.

Most incremental and streaming workloads on Databricks
are powered by Structured Streaming, including Delta Live
Tables and Auto Loader.

Apache Spark Structured Streaming is a near-real time
processing engine that offers end-to-end fault tolerance with
exactly-once processing guarantees. The Structured
Streaming engine performs the computation incrementally
and continuously updates the result as streaming data
arrives.

Databricks recommends using Auto Loader to ingest
supported file types from cloud object storage into Delta
Lake. For ETL pipelines, Databricks recommends using Delta
Live Tables (which uses Delta tables and Structured
Streaming).

In addition to Delta Lake and Auto Loader, Structured
Streaming can connect to messaging services such as
Apache Kafka.

User can use Structured Streaming for near real-time and
incremental processing workloads. Databricks recommends
using Delta Live Tables for Structured Streaming workloads.

Read from a data stream.

User can use Structured Streaming to incrementally ingest
data from supported data sources. Structured Streaming
workloads supports the following data sources:



« Data files in cloud object storage
. Message buses and queues
« Delta Lake

Databricks recommends using Auto Loader for streaming
ingestion from cloud object storage.

Auto Loader to read streaming data

The following example demonstrates loading JSON data
(present in cloud object storage) with Auto Loader, which
uses cloudFiles to denote format and options.
The schemalocation option enables schema inference and
evolution.

raw_df = (spark.readStream
.format("cloudFiles")
.option("cloudFiles.format”, "json")
.option("cloudFiles.schemalocation", “ < path-to-schema-location> ")
Joad(file_path))
file_path is the path of JSON file or folder containing JSON
files.

Configuring a streaming read (As shown above) does not
actually load data. User must trigger an action on the data
before the stream begins e.g. calling display() on a
streaming DataFrame starts a streaming job.

Structured Streaming supports most transformations that
are available in Databricks and Spark SQL.

Write to a data Sink
A data sink is the target of a streaming write operation.
Common sinks wused in Azure Databricks streaming
workloads include the following:

« Delta Lake

« Message buses and queues



« Key-value databases

Most data sinks provide several options to control how data
is written to the target system. During writer configuration,
the main options user might need to set fall into the
following categories:

o Output mode (append by default).
« A checkpoint location (required for each writer).

« Trigger intervals

« Options that specify the data sink or format (for
example, file type, delimiters, and schema).

« Options that configure access to target systems (for
example, port settings and credentials).

Incremental batch write

The below code does the incremental batch write for
stream. User needs to specify the target location for write
and checkpoint location.

transformed_df.writeStream
.trigger(availableNow=True)
.option("checkpointLocation”, checkpoint_path)
.option("path", target_path)
.start()

The availableNow setting for the trigger instructs Structured
Streaming to process all previously unprocessed records
from the source dataset.

Read data from Delta Lake

To read the data from stream, it can be done through the
code:

spark.readStream.table("<table-namel>")



Write to Delta Lake
To write to a delta table, it can be done through the code:

df.writeStream
format("delta")
.outputMode("append")
.option("checkpointLocation", "/tmp/delta/events/ checkpoints/")

.toTable("events")

The above example will write the streaming data to events
table. User must have proper permissions configured to read
source tables and write to target tables and the specified
checkpoint location.

Read data from Kafka, transform, and write to Kafka
Apache Kafka and other messaging buses provide some of
the lowest latency available for large datasets. User can use
Databricks to apply transformations to data ingested from
Kafka and then write data back to Kafka.

The following is an example for a streaming read from
Kafka:
df = (spark.readStream

format("kafka")

.option("kafka.bootstrap.servers", "<server:ip>")

.option("subscribe", "<topic>")

.option("startingOffsets", "latest")

load())

To write data to kafka:

df.writeStream
format("kafka")
.option("kafka.bootstrap.servers", "<server:ip>")

.option("topic", "<topic>")



.option("checkpointLocation", "<checkpoint-path>")

.start()

Using Unity Catalog with Structured Streaming

Use Structured Streaming with Unity Catalog to manage
data governance for incremental and streaming workloads
on Databricks. The Unity Catalog data governance model
allows to stream data from managed and external tables in
Unity Catalog. User can write data to external tables using
either table names or file paths. Use table name to interact
with managed tables on Unity Cataloqg.

Streaming with Delta lake

Delta Lake is deeply integrated with Spark Structured
Streaming through readStream and writeStream. Delta Lake
has the following benefits.

« Coalescing small files produced by low latency
ingest

« Maintaining “exactly-once” processing with more
than one stream (or concurrent batch jobs)

. Efficiently discovering which files are new when
using files as the source for a stream

When user loads a Delta table as a stream source and use it
in a streaming query, the query processes all of the data
present in the table as well as any new data that arrives
after the stream is started.

spark.readStream.format("delta").load("Delta file path”)

If the schema for a Delta table changes after a streaming
read begins against the table, the query fails.

Limit input rate



The following options are available to control micro-batches:

« maxFilesPerTrigger: How many new files to be
considered in every micro-batch. The default is
1000.

« maxBytesPerTrigger: How much data gets
processed in each micro-batch.

If user uses maxBytesPerTrigger in conjunction with
maxFilesPerTrigger, the micro-batch processes data until
either the maxFilesPerTrigger or maxBytesPerTrigger limit is
reached.

Structured Streaming does not handle input that is not an
append and throws an exception if any modifications occur
on the table being used as a source. There are two main
strategies for dealing with changes:

« User can delete the output and checkpoint and
restart the stream from the beginning.

« User can set either of these two options:
o ignoreDeletes: ignore transactions that
delete data at partition boundaries
(the WHERE is on a partition column).

spark.readStream.format("delta").option("ignoreDeletes",

“true").load("Delta file path")

o skipChangeCommits: ignore transactions that
delete or modify existing
records. skipChangeCommits includes
ignoreDeletes.

Specify Initial position:

User can specify the starting point of the Delta Lake
streaming source without processing the entire table. The
options to do this are:



« StartingVersion: The Delta Lake version to start
from. All table changes starting from this version
(inclusive) will be read by the streaming source.
The commit versions can be obtained from
the version column of the DESCRIBE
HISTORY command output. In the example below,
the changes are read from version 5 for
user_events table.

spark.readStream.format("delta").option("startingVersion",

"5").load("/tmp/delta/user_events")

« StartingTimestamp: The timestamp to start from.
All table changes committed at or after the
timestamp (inclusive) will be read by the streaming
source. In the example below, changes are read
since 2018-10-18, use:

spark.readStream.format("delta").option("startingTimestamp", "2018-10-

18").load("/tmp/delta/user_events")

Delta table as a sink

User can write data into a Delta table using Structured
Streaming. The transaction log enables Delta Lake to
guarantee exactly once processing, even when there are
other streams or batch queries running concurrently against
the table.

By default, streams run in append mode, which adds new
records to the table.

events.writeStream.format("delta")

.outputMode("append")



.option("checkpointLocation”, "/tmp/delta/_checkpoints/")

.start("/delta/events")

To save the data in table, use the code like:

events.writeStream
format("delta")
.outputMode("append")

.option("checkpointLocation", "/tmp/delta/events/_checkpoints/")

.toTable("events")

User can also use Structured Streaming to replace the entire
table with every batch. User has to use complete mode for

outputmode like:

events.writeStream

format("delta")

.outputMode("complete")
.option("checkpointLocation”, "/tmp/delta/events/ checkpoints/")

.toTable("events")

Performing stream-static joins

User can rely on the transactional guarantees and
versioning protocol of Delta Lake to perform stream-
static joins. A stream-static join joins the latest valid version
of a Delta table (the static data) to a data stream using a
stateless join. As can be seen below, inner join is done
between streaming data & static dataframe.

streamingDF = spark.readStream.table("orders")

staticDF = spark.read.table("customers")

query = (streamingDF
Jjoin(staticDF, streamingDF.customer_id==staticDF.id, "inner")

.writeStream



.option("checkpointLocation", checkpoint_path)

table("orders_with_customer_info")

)

Processing results from streaming queries

using foreachBatch

User can use a combination of merge and foreachBatch to
write complex upserts from a streaming query into a Delta
table.

from delta.tables import *

deltaTable = DeltaTable.forPath(spark, "/data/aggregates")

# Function to upsert microBatchOutputDF into Delta table using merge
def upsertToDelta(microBatchOutputDF, batchld):
(deltaTable.alias("t").merge(
microBatchOutputDF.alias("s"),
"s.key = t.key")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()

.execute()

# Write the output of a streaming aggregation query into Delta table by call

above function

(streamingAggregatesDF.writeStream
format("delta")
.foreachBatch(upsertToDelta)
.outputMode("update")

.start()



This way the micro batch output of streaming can be
processed for upsert or any other transformation.

Write to Azure Synapse Analytics

User can write the output of a streaming query to Azure
Synapse Analytics using foreachBatch function of
writeStream. It takes each batch of data and write to Azure
synapse analytics. In the example below,
writeToSQLWarehouse function is used to write the batch of
data to Azure synapse analytics. The function is called
during stream write.

from pyspark.sql.functions import *

from pyspark.sql import *

def writeToSQLWarehouse(df, epochld):
df.write \

format("com.databricks.spark.sqldw") \
.mode('overwrite') \
.option("url", "jdbc:sqlserver://<the-rest-of-the-connection-string>") \
.option("forward_spark_azure storage credentials"”, "true") \
.option("dbtable", "my_table_in_dw_copy") \
.option("tempdir", "wasbs://<your-container-name>@<your-storage-account-

name>.blob.core.windows.net/<your-directory-name>") \

.save()

# Write the output of a streaming aggregation query into synapse analytics
(streamingAggregatesDF.writeStream

format("delta")

.foreachBatch(writeToSQLWarehouse)

.outputMode("update")

.start()



Write to any location using foreachBatch

streamingDF.writeStream.foreachBatch function allows to
specify a function that is executed on the output data of
every micro-batch of the streaming query. It takes two
parameters: a DataFrame or Dataset that has the output
data of a micro-batch and the unique ID of the micro-batch.

If user wants to write the output of a streaming query to
multiple locations, then user can simply write the output
DataFrame/Dataset multiple times in the foreachBatch
function, but each attempt to write can cause the output
data to be recomputed (including possible re-reading of the
input data). To avoid recomputation, user should cache the
output DataFrame/Dataset, write it to multiple locations,
and then uncache it. So, in the foreachbatch function, user
should cache this dataframe, do the operation and then
uncache it.

In the code below, the microbatch dataframe is cached and
then this dataframe is written to both places and then it is
the uncached.

batchDF.persist()
batchDF.write.format(...).save(...) // location 1
batchDF.write.format(...).save(...) // location 2

batchDF.unpersist()

Write to any location using foreach()

If user can’t use foreachBatch function due to Databricks
Runtime lower than 4.2 or corresponding batch data writer
does not exist then user can use foreach().

def processRow(row):

// Write row to storage



query = streamingDF.writeStream.foreach(processRow).start()

Asynchronous progress tracking

Asynchronous progress tracking allows  Structured
Streaming pipelines to checkpoint progress asynchronously
and in parallel to the actual data processing within a micro-
batch.

Asynchronous progress tracking enables Structured
Streaming pipelines to checkpoint progress without being
impacted by the offset management operations.
stream = spark.readStream
format("kafka")
.option("kafka.bootstrap.servers", "hostl:portl,host2:port2")
.option("subscribe", "in")

Joad()

stream.writeStream
format("kafka")
.option("topic", "out")
.option("checkpointLocation”, "/tmp/checkpoint")
.option("asyncProgressTrackingEnabled", "true")

.start()

In the example above, user is reading stream from kafka
data sources and write the data to a topic.
asyncProgressTrackingEnabled is set to true which enables
the asynchronous progress tracking.



Apache Spark

Apache Spark is the technology which powers compute
clusters and SQL warehouses of Databricks. Databricks
provides an efficient and simple platform for running Apache
Spark workloads.

When user deploys a compute cluster or SQL warehouse on
Databricks, Apache Spark is configured and deployed to
virtual machines. Databricks configure or initialize a Spark
context or Spark session.

Databricks SQL uses Apache Spark under the hood, but end
users use standard SQL syntax to create and query
database objects.

PySpark DataFrames

A DataFrame is a two-dimensional labelled data structure
with columns of potentially different types. Apache Spark
DataFrames provide a rich set of functions (select columns,
filter, join, aggregate) that allow user to solve common data
analysis problems efficiently.

Spark DataFrames and Spark SQL use a unified planning and
optimization engine and hence user will get identical
performance across all supported languages on Databricks
(Python, SQL, Scala, and R).

Create a DataFrame

Most Apache Spark queries return a DataFrame. This
includes reading from a table, loading data from files, and
operations that transform data.

User can create a Spark DataFrame from a list or a panda
DataFrame, such as in the following example:

To create spark dataframe from panda dataframe(pdf):
dfl = spark.createDataFrame(pdf)



To create spark DataFrame from list:

import pandas as pd
data = [[1, "Elia"], [2, "Te0"], [3, "Fang"]]
df2 = spark.createDataFrame(data, schema="id LONG, name STRING")

Create a DataFrame from catalog table
User can load catalog tables to DataFrames through the
below code:

df= spark.read.table("<catalog-name>.<schema-name>.<table-name>")

Load data from csv file
User can load csv file to a dataframe using the below
syntax:
df = (spark.read
format("csv")
.option("header", "true")
.option("inferSchema", "true")

Joad("csv_file_path")

Combine DataFrames with join and union

Dataframes use standard SQL semantics for join operations.
A join returns the combined results of two dataframes based
on the provided matching conditions and join type. The
following example is an inner join between dataframes dfl
& df2 based on “id” column. The output dataframe is
joined_df.

joined_df = dfl.join(df2, how="inner", on="id")
User can add the combine two dataframes using the union

operation, as in the following example:
unioned_df = dfl.union(df2)



Filter rows in a DataFrame

User can filter rows in a DataFrame using filter or where.
There is no difference in performance or syntax. To get
records of dataframe df having id value more than 1, it can
be done through the following code:

filtered_df = df.filter("id > 1")
filtered_df = df.where("id > 1")

Select columns from a DataFrame
User can select columns by passing one or more column
names to select function.

select _df = df.select("id", "name")

View the DataFrame
To view the data in a tabular format, user can use the
Databricks display command.

display(df)

Print the data schema
User can print the schema using the printSchema() method.

df.printSchema()

Save a DataFrame to a table

Databricks uses Delta Lake for all tables by default. User
can save the contents of a DataFrame to a table using the
following syntax:

df.write.saveAsTable("<table-name=>")

Run SQL queries in PySpark
Spark Dataframes provide several options to combine SQL
with Python. The selectExpr( method allows to specify



each column as a SQL query, such as in the following
example:

display(df.selectExpr("id", "upper(name) as big_name"))

User can import the expr function from pyspark.sqgl.functions to
use SQL syntax anywhere a column would be specified, as
in the following example:

from pyspark.sql.functions import expr

display(df.select("id", expr("lower(name) as little_name")))

User can use spark.sqgl() to run SQL queries in the Python
kernel, as in the following example:

query_df = spark.sql("SELECT * FROM <table-name>")

Because logic is executed in the Python kernel and all SQL
queries are passed as strings, user can use Python
formatting to parameterize SQL queries, as in the following
example. query df contains the result of sqgl query as
dataframe.

table_ name = "my table"
query_df = spark.sql(f"SELECT * FROM {table_name}")



Clusters

A Databricks cluster is a set of computation resources and
configurations on which data engineering, data science, and
data analytics workloads are run.

These workloads are run as a set of commands in
a notebook or as an automated job. Clusters are of two
type, all-purpose clusters, and job clusters. All-purpose
cluster is used to analyse data collaboratively using
interactive notebooks. Job cluster is used to run automated
jobs.

« All-purpose cluster can be created using the Ul, CLlI,
or REST API. User can manually terminate and
restart an all-purpose cluster. Multiple users can
share such clusters to do collaborative interactive
analysis.

« The Databricks job scheduler creates a job
cluster when user run a job and terminates the
cluster when the job IS complete.
User cannot restart a job cluster.

To create a cluster using the user interface:

e Click Compute in the sidebar and then Create
compute on the Compute page.
e Choose the compute option and create the cluster.

Cluster policy

Cluster policies are a set of rules used to limit the
configuration options available to users when they create a
cluster. Cluster policies have access control list that regulate
which specific users and groups have access to certain
policies. While creating cluster, user must specify the cluster



policy. By default, all users have access to the Personal
Compute policy, allowing them to create single-machine
compute resources.

When creating a cluster, users can only select policies for
which they have been granted permission. To create cluster

policy:

e Click Compute in the sidebar
e Click the Cluster Policies tab and create policy.

Clusters

Clusters Pools Cluster Policies @

Cluster access mode

Cluster access mode is a security feature that determines
who can use a cluster and what data they can access via
the cluster. When user create any cluster in Azure
Databricks, user must select an access mode. The access
modes are:

e Single user: It is always visible to User. It supports
Unity catalog. Supported languages are Python,
SQL, Scala, R. Cluster can be assigned to and used
by a single user only. Dynamic views are not
supported. Credential passthrough is not supported.

e Shared: - It is always (Premium plan required)
visible to users. It supports Unity catalog.
Supported languages are Python (on Databricks
Runtime 11.1 and above), SQL. Cluster can be used
by multiple users with data isolation among users.

e No isolation shared: Multiple users can use the
same cluster. Users share credentials set at the
cluster level. No data access controls are enforced.



Cluster Node Type

A cluster consists of one driver node and zero or more
worker nodes. By default, the driver node uses the same
instance type as the worker node, but user can choose
separate instance types for the driver and worker nodes.
Different families of instance types fit different use cases,
such as memory-intensive or compute-intensive workloads.
Use GPU-enabled clusters for computationally challenging
tasks that demand high performance, like those associated
with deep learning.

Driver node

The driver node maintains state information of all notebooks
attached to the cluster. The driver node also maintains the
SparkContext, interprets all the commands user run from a
notebook or a library on the cluster, and runs the Apache
Spark master that coordinates with the Spark executors.

The default node type of the driver is the same as the
worker node type. User can choose a larger driver node type
with more memory if user is planning to collect a lot of data
from Spark workers and analyse them in the notebook.

The command to collect the data for dataframe df:
df.collect()

Worker node

Azure Databricks worker nodes run the Spark executors.
When workload is distributed with Spark, all the distributed
processing happens on worker nodes. Databricks runs one
executor per worker node. The terms executor and worker
are used interchangeably in the context of the Databricks
architecture.

To run a Spark job, user needs at least one worker node. If a
cluster has zero workers, user can run non-spark commands
on the driver node, but Spark commands will fail.

Spot instances



To save cost, user can choose to use spot instances by

checking the Spot instances checkbox.
Worker Type © Workers
Standard DS3 v2 14.0 GB Memory, 4 Cores, 0.75 DBU 8 Spot instance(s) (7]

The first instance will always be on-demand (the driver node
is always on-demand) and subsequent instances will be spot
instances. If spot instances are evicted due to unavailability,
on-demand instances are deployed to replace evicted
instances.

Cluster size and autoscaling

When user creates an Azure Databricks cluster, user can
either provide a fixed number of workers for the cluster or
provide a minimum and maximum number of workers for
the cluster.

When user provides a fixed size cluster, Databricks ensures
that cluster has the specified number of workers. When user
provides a range for the number of workers, Databricks
chooses the appropriate number of workers required to run
job. This is referred to as autoscaling.

Autoscaling makes it easier to achieve high cluster
utilization, because user doesn’t need to provision the
cluster to match a workload. Autoscaling thus offers two
advantages:

« Workloads can run faster compared to a constant-
sized under-provisioned cluster.

e Autoscaling clusters can reduce overall costs
compared to a statically sized cluster.

On the cluster creation and edit page, select the Enable
autoscaling checkbox in the Autopilot Options box:



For the Job cluster, On the cluster creation and edit page,
select the Enable autoscaling checkbox in the Autopilot
Options box:

Autopilot Options
Enable autoscaling @

After enabling autoscaling, configure Min & max workers.

Autoscaling local storage

Databricks automatically enables autoscaling local storage
on all Databricks clusters. With autoscaling local storage,
Databricks monitors the amount of free disk space available
on cluster’s Spark workers. If a worker begins to run too low
on disk, Databricks automatically attaches a new managed
disk to the worker before it runs out of disk space. The
managed disks attached to a virtual machine are detached
only when the virtual machine is returned to cloud
provider. Managed disks are never detached from a virtual
machine as long as they are part of a running cluster.

Cluster tags

Cluster tags allow to easily monitor the cost of cloud
resources used by various groups in organization. User can
specify tags as key-value pairs when user creates a cluster.

Spark configuration
User can provide custom Spark configuration properties in a
cluster configuration. On the cluster configuration page,
click the Advanced Options toggle and Click the Spark tab.
In Spark config, enter the configuration properties as one
key-value pair per line.



Spark Tags Logging Init Scripts JDBC/ODBC Permissions

Spark Config @

A

To reference a secret in the Spark configuration through
databrick notebook, use the following syntax:

spark.conf.get("spark.<property-name>")

Using SQL, user can get the value using below command:

SELECT ${spark.<property-name>}

Cluster log delivery

When user creates a cluster, user can specify a location to
deliver the logs for the Spark driver node, worker nodes,
and events. Logs are delivered every five minutes to the
chosen destination. Databricks guarantees to deliver all logs
generated up until the cluster was terminated.

The destination of the logs depends on the cluster ID. If the
specified destination is dbfs:/cluster-log-delivery, cluster
logs for id “clustered” are delivered to:

dbfs:/cluster-log-delivery/clustered

To configure the log delivery location:

e On the cluster configuration page, click
the Advanced Options toggle.

 Click the Logging tab.



Spark Tags Logging Init Scripts

Destination & Cluster Log Path @

DBFS w |  dbfs/cluster-logs

e Select a destination type.
e Enter the cluster log path.

Personal Compute resource

Personal Compute is an Azure Databricks-managed
default cluster policy available on all Databricks
workspaces. The policy allows users to easily create single-
machine compute resources for their individual use so they
can start running workloads immediately, minimizing
compute management overhead. Personal compute
resources are all-purpose clusters with the following
properties:

e Personal Compute resources are single-node
clusters. The cluster is having no worker and with
spark running in local mode.

e Auto-termination is set at 72 hours.

e Both standard instances and GPU-enabled instances
are available

If user doesn’t see the Personal Compute policy as an option
when user creates a cluster, then user have not been given
access to the policy. User should contact administrator to
request access to the Personal Compute policy.

Ail-purpase compute ioh compute Rocls Palicies @

mpute | W Creste compute

To create personal compute cluster, click on Create
Personal Compute. This will open the cluster configuration



dialog with the Personal Compute policy chosen. Click
Create Cluster. This will create Personal compute cluster.
User can set auto termination for a cluster. During cluster
creation, user can specify an inactivity period in minutes
after which user want the cluster to terminate. If the
difference between the current time and the last command
run on the cluster is more than the inactivity period
specified, Databricks automatically terminates that cluster.
User can configure automatic termination in the create
cluster Ul. Ensure that the box is checked and enter the
number of minutes in the Terminate after _ of minutes of
inactivity setting.

Terminate after 10 minutes of inactivity @

Pools

Databricks pools are a set of idle, ready-to-use
instances. When cluster nodes are created using the idle
instances, cluster start, and auto-scaling times are reduced.
If the pool has no idle instances, the pool expands by
allocating a new instance from the instance provider to
accommodate the cluster's request. This can lead to
increase in time for instance allocation as new instance will
be created and allocated. In case of idle instance in pool,
since it is already available then allocation is quick, and
performance is not impacted. When a cluster releases an
instance, it returns to the pool and is free for another cluster
to use. Only clusters attached to a pool can use that pool’s
idle instances.

Creating a pool reduces cluster start and scale-up times by
maintaining a set of available, ready-to-use instances.



Databricks recommends taking advantage of pools to
improve processing time while minimizing cost.

User can specify a different pool for the driver node and
worker nodes or use the same pool for both. Azure
Databricks does not charge DBUs while instances are idle in
the pool. Cloud instance provider billing does apply as idle
instance is created by the cloud provider.

If driver node and worker nodes have different
requirements, create a different pool for each. User can
minimize instance acquisition time by creating a pool for
each instance type e.g., if most data engineering clusters
use instance type A, data science clusters use instance type

B, and analytics clusters use instance type C, create a pool
with each instance type.

Pools should be used for job with strict execution times
requirements. When cost saving takes priority over
reliability then use Pools with spot instances.

Configure pools to control cost:
User can use the following configuration options to help
control the cost of pools:

e Set the Min Idle instances to 0 to avoid paying for
running instances that aren’t doing work. The trade-
off is a possible increase in time when a cluster
needs to acquire a new instance.

e Set the Idle Instance Auto Termination time to
provide a buffer between when the instance is
released from the cluster and when it's dropped
from the pool. This is helpful to ensure that idle
instances remain available for subsequent jobs.

e Set the Max Capacity based on anticipated usage.
This sets the ceiling for the maximum number of



used and idle instances in the pool. Set the
maximum capacity only if there is a strict instance
quota or budget constraint.

Pre-populate pools

To benefit fully from pools, user should pre-populate newly
created pools. Set the Min Idle instances greater than zero
in the pool configuration. This is to ensure than Pool have
available instances for the job.

If user wants to set this value to zero, use a starter job to
ensure that newly created pools have available instances for
clusters to access. With the starter job approach, schedule a
job to run before jobs or users start using clusters. After the
job finishes, the instances used for the job are released back
to the pool. Set Min Idle instance setting to 0 and set
the Idle Instance Auto Termination time high enough to
ensure that idle instances remain available for subsequent
jobs.

Using a starter job allows the pool instances to spin up,
populate the pool, and remain available for job or
interactive clusters.

Create a Pool
To create a pool using the Ul:

e Click Compute in the sidebar.
e Click the Pools tab.

e Click the Create Pool button.

e Specify the pool configuration.
e Click the Create button.

To attach a cluster to a pool using the cluster creation Ul,
select the pool from the Driver Type or Worker
Type dropdown while configuring the cluster. Available pools



are listed at the top of each dropdown list. User can use the
same pool or different pools for the driver node and worker
nodes.

Minimum ldle Instances

When user creates a pool, in order to control its size, user
can set three parameters: minimum idle instances,
maximum capacity, and idle instance auto termination.

The minimum number of instances the pool keeps idle.
These instances do not terminate, regardless of the auto
termination settings. If a cluster consumes idle instances
from the pool, Azure Databricks provisions additional
instances to maintain the minimum.

Maximum Capacity

The maximum number of instances the pool can provision. If
a cluster using the pool requests more instances than this
number during autoscaling, the request fails with
an INSTANCE_POOL_MAX_ CAPACITY_FAILURE error. This
configuration is optional. This is preferred if user have
instance quota, or user needs to cap cost.

Idle Instance Auto Termination
The time in minutes that instances can be idle before being
terminated by the pool.

Instance types

User defines instance type when creating a pool. A pool’s
instance type cannot be edited. Clusters attached to a pool
use the same instance type for the driver and worker nodes.
Based on use cases, such as memory-intensive or compute-
intensive workloads, user can choose different families of
instance types.

Pool tags
Pool tags allow to easily monitor the cost of cloud resources
used by various groups in organization. User can specify



tags as key-value pairs when user creates a pool.

Databricks applies three default tags to each
pool: Vendor, DatabricksinstancePoolld,
and DatabricksinstancePoolCreatorld. User can also add
custom tags while creating a pool. User can add up to 41
custom tags. Pool-backed clusters inherit default and
custom tags from the pool configuration.

To add additional tags to the pool, navigate to the Tabs tab
at the bottom of the Create Pool page. Click the +
Add button, then enter the key-value pair.

Autoscaling local storage
Azure Databricks automatically enables autoscaling local
storage on all Azure Databricks pools.

With autoscaling local storage, Azure Databricks monitors
the amount of free disk space available on pool’s instances.
If an instance runs too low on disk, a new managed disk is
attached automatically before it runs out of disk space.
Managed disks are never detached from a virtual machine if
it is part of a pool. The managed disks attached to a virtual
machine are detached only when the virtual machine is
returned to cloud provider.

Spot instances

To save cost, user can choose to use spot instances by
checking the All Spot radio button. Clusters in the pool will
launch with spot instances for all nodes, driver, and worker.
If spot instances are evicted due to unavailability, on-
demand instances do not replace evicted instances.

Delete a pool
Deleting a pool terminates the pool’s idle instances and
removes its configuration. If user deletes the pool then

e Running clusters attached to the pool continue to
run but cannot allocate instances during resize or



up-scaling.
 Terminated clusters attached to the pool will fail to
start.

Databricks Container Services

Databricks Container Services lets us specify a Docker
image while creating a cluster. Some examples use cases
include:

« Library customization: User have full control over
the system libraries user wants installed.

« Golden container environment: Docker image is a
locked down environment that will never change.

« Docker CI/CD integration: User can integrate Azure
Databricks with Docker CI/CD pipelines.

User can also use Docker images to create custom deep
learning environments on clusters with GPU devices.
To launch cluster using Ul:

« On the Create Cluster page, specify a Databricks
Runtime Version that supports Databricks Container
Services.

. Under Advanced options, select the Docker tab.

. Select Use your own Docker container.

« In the Docker Image URL field, enter custom Docker
image.

« Docker image URL examples:

Docker Hub : <organization>/<repository>:<tag>
(e.g.databricksruntime/standard:latest)

Azure Container Registry: <your-registry-
name>.azurecr.io/<repository-name>:<tag>



Single Node clusters

A Single Node cluster is a cluster consisting of an Apache
Spark driver and no Spark workers. A Single Node cluster
supports Spark jobs and all Spark data sources,
including Delta Lake. A Standard cluster requires a
minimum of one Spark worker to run Spark jobs. Single
Node clusters are helpful for:

« Single-node machine learning workloads that use
Spark to load and save data.
« Lightweight exploratory data analysis

To create a Single Node cluster, select the Single
Node button while configuring a cluster. A Single Node
cluster has the following properties:

« Runs Spark locally.
« The driver acts as both master and worker, with no
worker nodes.

A Single Node cluster has the following limitations:

. Large-scale data processing will exhaust the
resources on a Single Node cluster. For these
workloads, Databricks recommends using a Multi
Node cluster.

« Single Node clusters are not designed to be
shared.

« Single Node clusters are not compatible with
process isolation.

« GPU scheduling is not enabled on Single Node
clusters.

Debugging with the Apache Spark Ul



There are different debugging options available to peek at
the internals of Apache Spark application. The three
important places to look are:

« Spark Ul
« Driver logs
. Executor logs

Spark Ul

Once the job is started, the Spark Ul shows information
about what’s happening in the application. To get to the
Spark Ul, click the attached cluster.

Streaming tab

Once user gets to the Spark Ul, user will see a Streaming
tab if a streaming job is running in this cluster. If there is no
streaming job running in this cluster, this tab will not be
visible. Skip to Driver logs to learn how to check for
exceptions that might have happened while starting the
streaming job.

The first thing to look for in this page is to check if
streaming application is receiving any input events from
source.

Processing time

Processing Time graph helps to understand the performance
of streaming job. As a general rule of thumb, it is good if
user can process each batch within 80% of batch processing
time e.q., if the batch interval is 2 seconds and the average
processing time is 450ms, which is well under the batch
interval. If the average processing time is closer or greater
than the batch interval, then user will have a streaming
application that will start queuing up resulting in backlog.
The backlog can soon bring down streaming job eventually.

Completed batches



The end of the page displays details about the last 1000
batches that completed. From the table, user can get the
numbers of events processed for each batch and their
processing time. User can click the batch link to get more
details.

Job details page

The job details page shows a DAG visualization. This is a
very useful to understand the order of operations and
dependencies for every batch. At the bottom of the page,
user will also find the list of jobs that were executed for this
batch. User can click the links in the description to drill
further into the task level execution.

Driver logs
Driver logs are helpful for 2 purposes:

« Exceptions: Sometimes, User may not see the
Streaming Tab in the Spark Ul. This is because the
Streaming job was not started because of some
exception. User can drill into the Driver logs to look
at the stack trace of the exception.

« Prints: Any print statements as part of the DAG
shows up in the logs too.

Executor logs

Executor logs are sometimes helpful if user would like to see
the logs for specific tasks. From the task details page, user
can get the executor where the task was run. Once user
has executor name, user can go to the clusters Ul page,
click the nodes, and then the master. The master page lists
all the workers. User can choose the worker where the
suspicious task was run and then get to the log4j output.

Handling large queries in interactive workflows



A challenge with interactive data workflows is handling large
queries. These queries can be extremely slow, saturate
cluster resources, and make it difficult for others to share
the same cluster.

Query Watchdog is a process that prevents queries from
monopolizing cluster resources by examining the most
common causes of large queries and terminating queries
that pass a threshold.

To enable Query Watchdog, set the following property:

spark.conf.set("spark.databricks.queryWatchdog.enabled", true)

To a prevent a query from creating too many output rows for
the number of input rows, user can configure the maximum
number of output rows as a multiple of the number of input
rows. In this example shown below user use a ratio of 1000
(the default).

spark.conf.set("spark.databricks.queryWatchdog.outputRatioThreshold", 1000L)

The above configuration declares that any given task should
never produce more than 1000 times the number of input
rows.

Query Watchdog also saves time by fast failing a query that
would have never completed. This is achieved through
minTimeSecs & minOutputRows properties. minTimeSecs
specifies the minimum time a given task in a query must
run before cancelling it. minOutputRows specifies the
minimum number of output rows for a task in that query.

User can set minTimeSecs to a higher value if user wants to
give it a chance to produce a large number of rows per task.

User can set spark.databricks.queryWatchdog.minOutputRows to ten
million if user wants to stop a query only after a task in that
query has produced ten million rows. This is set through as
shown below:



spark.conf.set("spark.databricks.queryWatchdog.minTimeSecs", 10L)
spark.conf.set("spark.databricks.queryWatchdog.minOutputRows", 100000L)

Query Watchdog should be enabled for ad hoc analytics
clusters where SQL analysts and data scientists are sharing
a given cluster and an administrator needs to make sure
that queries “play nicely” with one another. It is
recommended to disable Query Watchdog for all but ad hoc
analytics clusters.



Databricks notebooks

Notebook is a common tool for developing code and
presenting results. It is primary tool for creating data
engineering workflows and collaborating with colleagues.
Databricks notebooks provide real-time co-authoring in
multiple languages, automatic versioning, and built-in data
visualizations.

Create a Notebook
User can create a new notebook in any folder (for example,
in the Shared folder) following these steps:

« In the sidebar, click Workspace.

« Right-click on the name of any folder and
select Create > Notebook. A blank notebook opens
in the workspace.

To change the title of an open notebook, click the title and
edit inline or click File > Rename.

To view notebooks attached to a cluster, click on
Notebooks tab on the cluster details page. The tab also
displays the status of the notebook, along with the last time
a command was run from the notebook.

Develop code in Databricks notebooks

Code or SQL statements are written in a notebook cell. Use
Ctrl+Shift+ Enter to execute the code of cell. If user wants to
run only the part of the code in cell, select that piece of
code and use Ctrl+Shift+Enter to run the selected text.



Run selected text Python v
File Edit View Run Help Last edit was now Give feedback

L=)

. !ﬂef power (n, m):

return n =% m
power(3, 4)

print("End result is", power(5, 6))

Out[6]: 8

Version history

Azure Databricks notebooks maintain a history of notebook
versions, allowing user to view and restore previous
snapshots of the notebook. User can perform the following
actions on versions: add comments, restore and delete
versions, and clear version history.

To access notebook versions, select File > Version history.

To add a comment to the latest version, Click the version
and click on Save now. In the Save Notebook Revision
dialog, enter a comment and click on Save. The notebook
version is saved with the entered comment.

To restore a version, Click the version which user wants to
restore and click “Restore this version”. Click Confirm. The
selected version becomes the Ilatest version of the
notebook.

To delete a version entry, Click the version that user wants
to delete and click the trash icon. Click Yes, erase and the
selected version is deleted from the history.

To clear the version history for a notebook, Select File >
Clear version history. Click Yes, clear. The notebook version
history is cleared.



Set default language
The default language for the notebook appears next to the
notebook name.

databricks-quickstart-notebook % main  Python v
Schedule v m ~

g . ) ¥ Run all ® Connect v
File Edit WView Run Help Last edit was now Give feedback

To change the default language, click the language button
and select the new language from the dropdown menu. To
ensure that existing commands continue to work,
commands of the previous default language are
automatically prefixed with a language magic command.
The language magic command format is %<language>. The
supported magic commands are: %python, %r , %scala,
and %sql .

By default, cells use the default language of the notebook.
User can override the default language in a cell by clicking
the language button and selecting a language from the
dropdown menu.

Python | P~ v = X

Markdown
Python (Notebook default)
Scala

saL &

R

Notebooks also support a few auxiliary magic commands:

« %sh: Allows to run shell code in notebook.

« %fs: Allows to use dbutils filesystem commands e.g,
to run the dbutils.fs.Is command to list files. User
can specify %fs Is instead.

¢ %md: Allows to include various types of

documentation, including text, images, and
mathematical formulas and equations.



Link to other notebooks

User can link to other notebooks or folders using relative
paths. Specify the hnref attribute of an anchor tag as the
relative path, starting with a s

<a href="$./myFolder2/myNotebook2"> Link to nested notebook</ a>

Compute resources for notebooks

User can run a notebook on a Databricks cluster, or, for SQL
commands, user also have the option to use a SQL
warehouse, a type of compute that is optimized for SQL
analytics.

To attach a notebook to a cluster, click the compute selector
in the notebook toolbar and select a cluster from the
dropdown menu. The menu shows a selection of clusters
that user have used recently or that are currently running.

» Run all I ® Q1 analysis cluster v&'_J
Connected Go to last run cell
@ Q1 analysis cluster >
Runtime DBR 12.2 LTS - Spark 3.3.2 - Scala 2.12
Driver + 64 GB -+ 16 Cores
Recent resources
® Q1 analysis cluster DBR 12.2 LTS
Active resources
® sgtm_testing SQL Medium
@ Forecasting Shared DBR 12.1 - 2-32 workers
® Shared Test Cluster DBR 12.2 LTS - 2-32 workers
® Shared Test Cluster 2 DBR 12.2 LTS - 2-32 workers

More...

Create new resource...

To select from all available clusters, click More.... Click on
the cluster name to display a dropdown menu and select an
existing cluster.



Attach to an existing compute resource X

© General cluster () SQL Warehouse
Summar
| Q® |01 analysis cluster y
1 Driver 64 GB Memaory, 16 Cores
® Shared Test Cluster DBR 12.2 LTS : inn (e
Runtime 12:2.x-scala? 12

® Shared Test Cluster 2 DBR 12.2 LTS Unity Catalog
3 DBU}h

® Q1 analysis cluster DBR 12.2 LTS
® Forecasting Shared DBER 12.1
B Spark Connect Shared Cluster DBR 12.2 LTS

ew resou
Create new resource Cancel Attach

User can also create a new cluster by selecting Create new
resource... from the dropdown menu.

To Use a notebook with a SQL warehouse, select “SQL
Warehouse” from the above image. When a notebook is
attached to a SQL warehouse, user can run SQL and
markdown cells. All other cells (Python, R, or other
languages) are ignored.

To detach a notebook from a compute resource, click the
compute selector in the notebook toolbar and hover over
the attached cluster or SQL warehouse in the list to display
a side menu. From the side menu, select Detach.

Python
4 O » Run all ® Single node 11.0 ML v Schedule v m ~
Give feedback
Connected
® Single node 11.0 ML 7 Detach
Runtime DER 11.0 ML - Spark 3.3.0 » Scala 2.12
to Driver i3.xlarge - 305 GB+ 4 Cores | Detach & Re-attach
Restart
Recent resources
Terminate
* Single node 11.0 ML DER 11.0 ML
ksb 4
5 i ; Resource details
W, Ve DBR 1.2 ML
ng d e 11.x Shared Autosca... Driver logs
WP o ML Cluster DBR 1.0 ML - 2-8 workers | oPark Ul
| coll
Terminal

Active resources



User can also detach notebooks from a cluster using
the Notebooks tab on the cluster details page. When user
detaches a notebook, the execution context is removed and
all computed variable values are cleared from the notebook.

It is recommended to detach unused notebooks from
clusters. This frees up memory space on the driver.



Schedule Notebook Job

User can create and manage notebook jobs directly in the
notebook Ul. If a notebook is already assigned to one or
more jobs, user can create and manage schedules for those
jobs. If a notebook is not assigned to a job, user can create
a job and a schedule to run the notebook.

To schedule a notebook job, click Schedule button at the top
right. If no jobs exist for this notebook, the Schedule dialog
appears.

Job name Scheduled job example

Schedule () Manual @ Scheduled

Every Day + |at 16 ~ : 00 v (UTC-07:00) Pacific Ti... ~

Cluster Add new job cluster 274.5 GB - 36 Cores - DBR 12.2 LTS - Spark 3.3.2 - Scala 2,12 # b

Cancel Create

If jobs already exist for the notebook, the Jobs List dialog
appears. User can still add a schedule by clicking on “Add a
schedule” button in the Job list dialog.

In the Schedule dialog:

« Select Manual to run job only when manually
triggered or scheduled to define a schedule for
running the job. If user selects scheduled, use the
dropdowns to specify the frequency, time, and time
zone.

« In the Cluster drop-down, select the cluster to run
the task.



If user have Allow Cluster Creation permissions, by
default the job runs on a new job cluster. If user
does not have Allow Cluster Creation permissions,
by default the job runs on the cluster that the
notebook is attached to. If the notebook is not
attached to a cluster, user must select a cluster
from the Cluster drop-down.

Optionally, enter any Parameter to pass to the job.
Specify the key and value of each parameter.
Through notebook widget, user can capture these
parameters values in notebook.

Optionally, specify email addresses to
receive Alerts on job events.

Export and import Databricks Notebooks
Databricks can import and export notebooks in the following

formats:

Source file: A file containing only source code
statements with the extension. scala, .py, .sql, or .r.
HTML: An Azure Databricks notebook with the
extension .html.

Databricks .dbc archive.

IPython notebook: A Jupyter notebook with the
extension ipynb.

RMarkdown: An R Markdown document with the
extension Rmd.

To import a notebook.,

Click Workspace in the sidebar.
Right-click on a folder and select Import.
Specify the URL or browse to a file.



« Click import.

If user chooses a single notebook, it is exported in the
current folder. If user choose a DBC or ZIP archive, its folder
structure is recreated in the current folder and each
notebook is imported.

To export a notebook, select File > Export in the notebook
toolbar and select the export format.

To export all folders in a workspace folder as a ZIP archive:

« Click Workspace in the sidebar.
« Right-click the folder and select Export. Select the
export format for export.

When user exports a notebook as HTML, IPython notebook
(.ipynb), or archive (DBC), and if user has not cleared the
command outputs, the outputs are included in the export.

To clear the notebook state and outputs, select one of
the Clear options at the bottom of the Run menu.

Share a notebook

To share a notebook with a co-worker, click Notebook
header share button at the top of the notebook. The
permissions dialog opens, which user can use to select who
to share the notebook with and what level of access they
have.

Databricks widgets
Input widgets allow user to add parameters to notebooks
and dashboards. Databricks widgets are best for:

« Building a notebook or dashboard that is re-
executed with different parameters.

« Quickly exploring results of a single query with
different parameters

There are 4 types of widgets:



« text: Input a value in a text box.

. dropdown: Select a value from a list of provided
values.

« combobox: Combination of text and dropdown.
Select a value from a provided list or input one in
the text box.

« multiselect: Select one or more values from a list of
provided values.

Running the below python command creates widgets for
each of the command.

dbutils.widgets.dropdown("state”, "CA", ["CA", "IL", "MI", "NY", "OR", "VA"])

dbutils.widgets.text("database", "customers_dev")

The below image shows the widget created after execution
of the above commands.

database state

customers_dev NY v

The widget values can be retrieved using the below
command.

dbutils.widgets.get("state")
dbutils.widgets.get("database")



Run a Databricks notebook from another notebook
A notebook can be called from another notebook using %run
or dbutils.notebook.run() command.

User can use %run to modularize code, for example by
putting supporting functions in a separate notebook. When
user use %run, the called notebook is immediately executed
and the functions and variables defined in it become
available in the calling notebook.

The dbutils.notebook APl is a complement to %run because
it lets user pass parameters to and return values from a
notebook. For example, user can get a list of files in a
directory and pass the names to another notebook. User can
also create if-then-else workflows based on return values or
call other notebooks using relative paths. Widget parameter
can be passed using %run, but user can’t get the return
value. Unlike %run, the dbutils.notebook.run() method starts
a new job to run the notebook.

statusval=dbutils.notebook.run("notebook-name"”, 60, {"argument": "data",

"argument2": "data2", ...})

In the above code, timeout value is 60 seconds. The return
value from the execution will be stored in statusval variable.
To implement this, dev should also implement exit() method
in calling notebook. The exit value will stop the further
execution and return the value of variable put in this. The
below code should be implemented in calling notebook to
return the value of status variable.

dbutils.notebook.exit("statusval")

Unit testing for notebooks

Unit testing is used to improve the quality and consistency
of notebooks’ code. Unit testing is an approach to testing
self-contained units of code, such as function. This helps to
find problems with code faster. There are a few common



approaches for organizing functions and their unit tests with
notebooks.

Store functions and their unit tests outside of notebooks.
The benefit of this approach is that user can call these
functions with and outside of notebooks. Test frameworks
are better designed to run tests outside of notebooks. The
challenge is that this approach also increases the number of
files to track and maintain.

Store functions in one notebook and their unit tests in a
separate notebook

The benefit of this approach is that these functions are
easier to reuse across notebooks. The challenge is that the
number of notebooks to track and maintain increases. These
functions cannot be used outside of notebooks.

Store functions and their unit tests within the same
notebook

The benefit of this approach is that functions and their unit
tests are stored within a single notebook for easier tracking
and maintenance. The challenge is that these functions can
be more difficult to reuse across notebooks. These functions
cannot be used outside of notebooks.

For Python and R notebooks, Databricks recommends
storing functions and their unit tests outside of notebooks.
For Scala notebooks, Databricks recommends including
functions in one notebook and their unit tests in a separate
notebook.

For SQL notebooks, Databricks recommends that user stores
functions as SQL user-defined functions (SQL UDFs) in
schemas (databases). User can then call these SQL UDFs
and their unit tests from SQL notebooks.

Sample unit test functions be:

« Whether a table exists in a database.



« Whether a column exists in a table.
« How many rows exist in a column for a value within
that column.

To get the best unit testing results, a function should return
a single predictable outcome and be of a single data type.

The below function returns how many rows exists in a
column.

def numRowsInColumnForValue(dataFrame, columnName, columnValue):
df = dataFrame.filter(col(columnName) == columnValue)

return df.count()

User can create test function to test this feature. In the test
notebook, pytest library must be installed and using the
below code, this functionality can be tested. The df,
columnName and columnValue variables value should be
defined in notebook before call the below function.

import pytest
def test_ numRowsInColumnForValue():

assert numRowsInColumnForValue(df, columnName, columnValue) > 0

pytest looks for .py files whose names start with test (or
end with _test) to test. Similarly, by default, pytest looks
inside of these files for functions whose names start
with test to test. So, the test notebook name should start
with test or end with _test. The function inside the
notebook should start with test .

To install pytest, run the below command at first cell of
notebook.

%pip install pytest






Databricks Workflows

Databricks Workflows orchestrates data processing,
machine learning, and analytics pipelines in the Azure
Databricks Lakehouse Platform. Workflows has fully
managed orchestration services integrated with the Azure
Databricks platform, including Databricks Jobs to run non-
interactive code in Databricks workspace and Delta Live
Tables to build reliable and maintainable ETL pipelines.

Workflow is orchestrated by an Databricks job.

Databricks Jobs

An Databricks job is a way to run data processing and
analysis applications. Job can consist of a single task or can
be a large, multi-task workflow with complex dependencies.
Databricks manages the task orchestration, cluster
management, monitoring, and error reporting for jobs. User
can run jobs immediately, periodically through an easy-to-
use scheduling system, whenever new files arrive in an
external location, or continuously to ensure an instance of
the job is always running. Jobs can be run interactively in
the notebook Ul. User can create and run a job using the
Jobs Ul, the Databricks CLI, or by invoking the Jobs API.

A job is composed of one or more tasks. Job tasks can be
created that run notebooks, JARS, Delta Live Tables
pipelines, or Python, Scala, Spark submit, and Java
applications. Job tasks can also orchestrate Databricks SQL
queries, alerts and dashboards to create analyses and
visualizations.

User can also add a task to a job that runs a different job.
This feature allows to break a large process into multiple
smaller jobs or create generalized modules that can be
reused by multiple jobs. User can control the execution
order of tasks by specifying dependencies between the



tasks. User can configure tasks to run in sequence or
parallel.

Databricks clusters and SQL warehouses provide the
computation resources for jobs. User can run jobs with a job
cluster, an all-purpose cluster, or a SQL warehouse.

« A job cluster is a dedicated cluster for job or
individual job tasks. A job can use a job cluster
that's shared by all tasks, or user can configure a
cluster for individual tasks when user creates or
edits a task. A job cluster is created when the job or
task starts and is terminated when the job or task
ends.

« An all-purpose cluster is a shared cluster that is
manually started and terminated and can be shared
by multiple users and jobs.

To optimize resource usage, Databricks recommends using a
job cluster for jobs. To reduce the time spent waiting for
cluster startup, consider using an all-purpose cluster.

Databricks Jobs and Delta Live Tables

Delta Live Tables is a framework that simplifies ETL and
streaming data processing. Delta Live Tables provides
efficient ingestion of data with built-in support for Auto
Loader, SQL and Python interfaces. User defines the
transformations to perform on data, and Delta Live Tables
manages task orchestration, cluster management,
monitoring, data quality, and error handling.

Databricks Jobs and Delta Live Tables provide a
comprehensive framework for building and deploying end-
to-end data processing and analysis workflows. Use Delta
Live Tables for all ingestion and transformation of data. Use
Databricks Jobs to orchestrate workloads composed of a
single task or multiple data processing and analysis tasks in



the Lakehouse platform, including Delta Live Tables
ingestion and transformation.

As a workflow orchestration system, Databricks Jobs
supports:

« Running jobs on a triggered basis, for example,
running a workflow on a schedule.

. Data analysis through SQL queries, machine
learning and data analysis with notebooks, scripts,
or external libraries, and so forth.

« Running a job composed of a single task, for
example, running an Apache Spark job packaged in
a JAR.

Create & Run Job

To create a Job, Click Workflows in the sidebar and
click “Create Job”. The Tasks tab appears with the create
task dialog.

Motebook

Parameters &
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Enter a name for the task in the Task name field.

In the Type dropdown menu, select the type of task
to run. The type of task can be notebook, python
script, python wheel, jar, delta live table pipeline
etc.

Select the Source which indicate whether it is
workspace or Git provider for file selection.
Configure the cluster where the task runs. In
the Cluster dropdown menu, select either New job
cluster or Existing All-Purpose Clusters.

To add dependent libraries, click + Add next
to Dependent libraries. Dependent libraries will be
installed on the cluster before the task runs.

To pass parameters, click on Add and provide
parameters.

To optionally receive notifications for task start,
success, or failure, click + Add next to Emails.

To optionally configure a retry policy for the task,
click + Add next to Retries.

To optionally configure an expected duration or a
timeout for the task, click + Add next to Duration
threshold.

Click on Create to create task.

To add another task, click + icon in the DAG view.

To run the job immediately, click “Run Now” button.

User can use Run Now with Different Parameters to re-run a
job with different parameters or different values for existing
parameters.



Click “ next to Run Now and select Run Now with
Different Parameters. Enter the new parameters depending
on the type of task and then click Run.

« Notebook: User can enter parameters as key-value
pairs or a JSON object. The provided parameters are
merged with the default parameters for the
triggered run. User can use this dialog to set the

values of widgets.

« JAR and spark-submit: User can enter a list of
parameters or a JSON document.

Run a job as a service principal

By default, jobs run as the identity of the job owner. This
means that the job assumes the permissions of the job
owner. The job can only access data and Databricks objects
that the job owner has permissions to access. User can
change the identity that the job is running as to a service
principal. Then, the job assumes the permissions of that
service principal instead of the owner.

To change the Run as setting user should have either Can
Manage or Is Owner permission on the job. To change the
run as field, do the following:

e In the sidebar, click Workflows.

e In the Name column, click the job name.

e In the Job details side panel, click the pencil icon
next to the Run as field.

e Search for and select the service principal.

e Click Save.

User can use a schedule to automatically run Databricks job
at specified times and periods. To do this, select the Job,
click it. Click Add trigger in the Job details panel and select



Scheduled in Trigger type. To run continuous job,
select Continuous in Trigger type.

To Trigger jobs when new files arrive, select File arrival in
Trigger type. In Storage location, enter the URL of the
external location or a subdirectory of the external location to
monitor.

View and manage job runs

To view the list of jobs user has access to, click Workflows in
the sidebar. The Jobs tab in the Workflows Ul lists
information about all available jobs, such as the creator of
the job, the trigger for the job, if any, and the result of the
last run.

User can view a list of currently running and recently
completed runs for all jobs use has access to, including runs
started by external orchestration tools such as Apache
Airflow or Azure Data Factory. To view the list of recent job
runs:

e Click Workflows in the sidebar.

e In the Name column, click a job name. The Runs tab
appears with matrix and list views of active and
completed runs.

The matrix view shows a history of runs for the job,
including each job task. Some of the information displayed
by runs list view are:

e The start time for the run.
« Whether the run was triggered by a job schedule or
an APl request, or was manually started.

e The status of the run like Pending, Running,
Skipped, Succeeded, Failed, Terminating etc.



« Click * to stop an active run or delete a
completed run.

Azure Databricks maintains a history of job runs for up to 60
days. If user needs to preserve job runs, Databricks
recommends exporting results before they expire.

Share information between tasks in job

User can use task values to pass arbitrary parameters
between tasks in an Databricks job. Task values are passed
using the taskValues subutility in Databricks Utilities. The
taskValues subutility provides a simple API that allows tasks
to output values that can be referenced in subsequent
tasks. Each task can set and get multiple task values. Task
values can be set and retrieved in Python notebooks.

The taskValues subutility provides two
commands: dbutils.jobs.taskValues.set() to set a variable
and dbutils.jobs.taskValues.get() to retrieve a
value. Suppose there are two notebook tasks:
Get user data and Analyze user data and want to pass
user's name and age from the Get user data task to
Analyze user data task. So, the below code should be
executed in databrick notebook in the Get user data
notebook.

dbutils.jobs.taskValues.set(key = 'name’, value = 'Some
User')
dbutils.jobs.taskValues.set(key = "age", value = 30)

Key is the task value and value is the value for this task
value’s key. The below code gets the values in second
notebook.

dbutils.jobs.taskValues.get(taskkey = "Get user data", key
= "age", default = 42, debugValue = 0)



dbutils.jobs.taskValues.get(taskkey = "Get user data", key
= "name", default = "Jane Doe")

Here taskKey is the name of the job task setting the value. If
the command cannot find this task, a ValueError is raised.

Pass context about job runs into job tasks.

User can pass the context about a job run, such as the run
ID or the job’s start time. The below templated variables
into a job task will pass Job Id. This variable should be
passed as part of the task’s parameters.

{
"MyJobID": "{{job_id} }"
}

Run tasks conditionally in an Databricks job

User can configure tasks in an Databricks job to only run
when specific conditions are met. User can use the Run
if condition to run a task even when some or all its
dependencies have failed, allowing job to recover from
failures and continue running.

User can configure a Run if condition when user edits a task
with one or more dependencies. To add the condition to the
task, select the condition from the Run if dropdown menu in
the task configuration. The Run if condition is evaluated
after all task dependencies have been completed. User can
also add a Run if condition when user adds a new task with
one or more dependencies.

User can add the following Run if conditions to a task:

e All succeeded: All dependencies have run and
succeeded. This is the default condition to run a
task. The task is marked as failed if the condition is
not met.



» At least one succeeded: At least one dependency
has succeeded. The task is marked as failed if the
condition is not met.

 None failed: None of the dependencies failed, and
at least one dependency was run. The task is
marked as failed if the condition is not met.

« All done: All dependencies have completed.

» At least one failed: At least one dependency failed.
The task is marked as Excluded if the condition is
not met.

» All failed: All dependencies have failed. The task is
marked as Excluded if the condition is not met.

Databricks Jobs determines whether a job run was
successful based on the outcome of the job’s leaf tasks. A
leaf task is a task that has no downstream dependencies. A
job run can have one of three outcomes:

. Succeeded: All tasks were successful.

. Succeeded with failures: Some tasks failed, but all
leaf tasks were successful.

. Failed: One or more leaf tasks failed.

Failures handled for continuous jobs

Databricks Jobs uses an exponential backoff scheme to
manage continuous jobs with multiple consecutive failures.
Exponential backoff allows continuous jobs to run without
pausing and return to a healthy state when recoverable
failures occur.

When a continuous job exceeds the allowable threshold for
consecutive failures, the following describes how
subsequent job runs are managed:



The job is restarted after a retry period set by the

system.

If the next job run fails, the retry period is
increased, and the job is restarted after this new
retry period.

(o}

For each subsequent job run failure, the
retry period is increased again, up to a
maximum retry period set by the
system. There is no limit on the number of
retries.

If the job run completes successfully and
starts a new run, or if the run exceeds a
threshold without failure, the job s
considered healthy, and the backoff
sequence resets.



Storage

Databricks uses a shared responsibility model to create,
configure, and access block storage volumes and object
storage locations in user’s cloud account. Loading data to or
saving data with Databricks results in files stored in either
cloud block storage or object storage.

Cloud Object storage or blob storage refers to storage
containers that maintain data as objects. Some object
storage offerings include features like versioning and
lifecycle management. Object storage has the following
benefits:

« High availability, durability, and reliability.

« Lower cost for storage compared to most other
storage options.

« Infinitely scalable (limited by the total amount of
storage available in a given region of the cloud).

Most cloud-based data lakes are built on top of open-source
data formats in cloud object storage. In almost all cases, the
data files user interacts with using Apache Spark on Azure
Databricks are stored in cloud object storage.

Block storage or disk storage refer to storage volumes that
correspond to traditional hard disk drives (HDDs) or solid-
state drives (SSDs). All virtual machines (VMs) require an
attached block storage volume.

When user turn on compute resources as part of cluster,
Databricks configures and deploys VMs and attaches block
storage volumes. This block storage is used for storing
ephemeral data files for the lifetime of the compute. These
files include the operating system and installed libraries.



While Apache Spark uses block storage in the background
for efficient parallelization and data loading, most code run
on Databricks does not directly save or load data to block
storage. The data is mostly saved to cloud object storage.

Databrick can connect to cloud storage e.g. Azure Data Lake
Storage Gen2 using Unity Catalog external locations and
Azure managed identities. User can also set Spark
properties to configure an Azure credentials to access Azure
storage.

Connect to Azure Data Lake Storage Gen2 with Unity

Catalog

Unity Catalog supports Azure Data Lake Storage Gen?2.
External locations and storage credentials allow Unity
Catalog to read and write data in Azure Data Lake Storage
Gen2. A storage credential is used for authentication to
Azure Data Lake Storage Gen2. It can be either an Azure
managed identity or a service principal. Databricks
recommends using an Azure managed identity. An external
location is an object that combines a cloud storage path
with a storage credential.

The Databricks user who creates the external location in
Unity Catalog must be a metastore admin or a user with
the CREATE EXTERNAL LOCATION privilege.

After user creates an external location in Unity Catalog, user
can grant the following permissions on it:

- CREATE TABLE
« READ FILES
« WRITE FILES

These permissions enable Azure Databricks users to access
data in Azure Data Lake Storage Gen2. Use the fully



qualified ABFS URI to access data secured with Unity
Catalog.

To access the external location, user can use the ABFS path:

dbutils.fs.Is("abfss://container@storageAccount.dfs.core.windows.net/external-

location/path/to/data")

To read the file from the external location:

spark.read.format("parquet").load("abfss://container@storageAccount.dfs.core.w

indows.net/external-location/path/to/data")

To Save the file to this external location:

df.write.format("parquet").save("abfss://container@storageAccount.dfs.core.win

dows.net/external-location/path/to/new-location")

To create table in unity catalog:
CREATE TABLE <catalog>.<schema>.<table-name>
(

<column-specification>

)
LOCATION ‘'abfss://<bucket-path>/<table-directory>"

The above SQL code will create the table in unity catalog
which points to external location.

Connect to Blob Storage
The following credentials can be used to access Azure Data
Lake Storage Gen2 or Blob Storage.

« OAuth 2.0 with an Azure service
principal: Databricks recommends using Azure
service principals to connect to Azure storage. User



can set Spark properties to configure Azure
credentials to access Azure storage.

service_credential = dbutils.secrets.get(scope="<secret-scope>",key="

<service-credential-key>")

spark.conf.set("fs.azure.account.auth.type.<storage-
account>.dfs.core.windows.net", "OAuth")
spark.conf.set("fs.azure.account.oauth.provider.type.<storage-
account>.dfs.core.windows.net",
"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider")
spark.conf.set("fs.azure.account.oauth2.client.id.<storage-
account>.dfs.core.windows.net", "<application-id>")
spark.conf.set("fs.azure.account.oauth?2.client.secret.<storage-
account>.dfs.core.windows.net", service_credential)
spark.conf.set("fs.azure.account.oauth2.client.endpoint.<storage-
account>.dfs.core.windows.net",

"https://login.microsoftonline.com/<directory-id>/oauth2/token")

Replace

. <secret-scope> with the Databricks secret
scope name.

« <service-credential-key> with the name of the
key containing the client secret.

« <storage-account> with the name of the Azure
storage account.

« <application-id> with the Application (client)
ID for the Azure Active Directory application.

« <directory-id> with the Directory (tenant) ID for
the Azure Active Directory application.



« Shared access signatures (SAS): User can use
storage SAS tokens to access Azure storage. With
SAS, user can restrict access to a storage account
using temporary tokens with fine-grained access
control.

spark.conf.set("fs.azure.account.auth.type.<storage-
account>.dfs.core.windows.net", "SAS")
spark.conf.set("fs.azure.sas.token.provider.type.<storage-
account>.dfs.core.windows.net",
"org.apache.hadoop.fs.azurebfs.sas.FixedSASTokenProvider")
spark.conf.set("fs.azure.sas.fixed.token.<storage-
account>.dfs.core.windows.net", dbutils.secrets.get(scope="<scope>",

key="<sas-token-key>"))

Replace

. <storage-account> with the Azure Storage
account name.

« <scope> with the Azure Databricks secret scope
name.

« <sas-token-key> with the name of the key
containing the Azure storage SAS token.

« Account keys: User can use storage account access
keys to manage access to Azure Storage. Storage
account access keys provide full access to the
configuration of a storage account, as well as the
data.

spark.conf.set(

"fs.azure.account.key.<storage-account>.dfs.core.windows.net",



dbutils.secrets.get(scope="<scope>", key="<storage-account-access-
key>"))
Replace

. <storage-account> with the Azure Storage
account name.

« <scope> with the Azure Databricks secret scope
name.

« <storage-account-access-key> with the name of
the key containing the Azure storage account
access key.

Once User has properly configured credentials to access
Azure storage container, user can interact with resources in
the storage account using URIs. Databricks recommends
using the abfss driver for greater security.
spark.read.load("abfss://<container-name>@<storage-account-

name>.dfs.core.windows.net/<path-to-data>

Using SQOL to load a csv file:

CREATE TABLE <database-name>.<table-name>;

COPY INTO <database-name>.<table-name>

FROM 'abfss://container@storageAccount.dfs.core.windows.net/path/to/folder’
FILEFORMAT = CSV

COPY_OPTIONS (‘mergeSchema' = 'true’);

Databricks recommends using an Azure service principal or
a SAS token to connect to Azure storage instead of account
keys. Databricks recommends using secret scopes for
storing all credentials. User can grant users, service
principals, and groups in workspace access to read the



secret scope. This protects the Azure credentials while
allowing users to access Azure storage.



Libraries

To make third-party or custom code available to notebooks
and jobs running on clusters, user needs to install relevant
library. Libraries can be written in Python, Java, Scala, and R.
User can perform library tasks through Workspace Ul, CLI or
Libraries API.

User can install libraries in three modes: cluster-installed,
notebook-scoped, and workspace.

Cluster libraries: Cluster libraries can be used by
all notebooks running on a cluster. User can
install a cluster library directly from the following
sources:

o A public repository such as PyPI, Maven,

or CRAN.

o A cloud object storage location.

o A workspace library in the DBFS root.

o Uploading library files from local machine.

Notebook-scoped libraries: Notebook-scoped
libraries, available for Python and R, allow to
install libraries and create an environment

scoped to a notebook session. These libraries do
not affect other notebooks running on the same
cluster. Notebook scoped libraries do not persist
and must be re-installed for each session.

« Workspace libraries: Workspace libraries serve as a
local repository from which user can create cluster-
installed libraries. A workspace library might be
custom code created by user’s organization or might
be a particular version of an open-source library that
user’s organization has standardized on.



Workspace libraries

Workspace libraries serve as a local repository from which
user creates cluster-installed libraries. A workspace library
might be custom code created by user’'s organization or
might be a particular version of an open-source library that
user’s organization has standardized on.

To create workspace library:

« Right-click the workspace folder where user
wants to store the library.

« Select Create > Library. The Create Library
dialog appears.

« Select the Library Source and select Library type
to install the library. The following are the library
source options:

o Upload a library

o Reference an uploaded library
o PyPIl package

o Maven package

o CRAN package

Workspace libraries in the Shared folder are available to all
users in a workspace, while workspace libraries in a user
folder are available only to that user.

Upload a Jar, Python egg, or Python wheel

« In the Library Source button list, select Upload.

« Select Jar, Python Egg, or Python Whl.

« Optionally enter a library name.

. Drag Jar, Egg, or WhI to the drop box or click the
drop box and navigate to a file. The file is
uploaded to dbfs:/FileStore/jars.

« Click Create. The library status screen displays.



Reference an uploaded jar, Python egg, or Python

wheel
User can create a new workspace library by referencing jar,

egg, or wheel files stored in the DBFS root, on object
storage, or with workspace files.

1. Select DBFS/ADLS in the Library Source button list.
Select Jar, Python Egg, or Python Whl.

Optionally enter a library name.

Specify the path to the library.

Click Create. The library status screen displays.

AW

Install a workspace library onto a cluster
User must install a workspace library on a cluster before it
can be used in a notebook or job.

To install workspace library:

« In the sidebar, click Compute.

« Click a cluster name.

« Click the Libraries tab.

« Click Install New.

o In the Library Source button list,
select Workspace Library.

« Select a workspace library.

« Click Install.

Move a workspace library

Workspace folders provide convenience for discovering
workspace libraries and managing ACLs. Moving a
workspace library does not move files but can modify which
users have access to the workspace library.

 Go to the workspace folder containing the library.



e Right-click the library name and select Move. A
folder browser displays.

e Click the destination folder.

e Click Move.

Delete a workspace library
Before deleting a workspace library, user should uninstall it
from all clusters. To delete a workspace library:

e Move the library to the Trash folder.
 Either permanently delete the library in the Trash
folder or empty the Trash folder.

Cluster libraries
Cluster libraries can be used by all notebooks running on a

cluster. In this, user should install a library for use with a
specific cluster. When user install a library on a cluster, a
notebook already attached to that cluster will not
immediately see the new library. User must first detach and
then reattach the notebook to the cluster.

To install a library on a cluster:

e Click Compute in the sidebar.

e Click a cluster name.

e Click the Libraries tab.

e Click Install New.

« The Install library dialog displays.

» Select one of the Library Source options, complete
the instructions that appear, and then click Install.

Install libraries from a package repository
Azure Databricks provides tools to install libraries from PyPI,
Maven, and CRAN package repositories.



For pyPl package installation, select PyPl in Library
Source button list. Enter a PyPl package name. To install a
specific version of a library, use this format for the library:
<library>==<version> For example, scikit-learn==0.19.1.

Install libraries from object storage

User can store custom JAR and Python Whl libraries in cloud
object storage and install these libraries in cluster. User
installing the library should have appropriate permissions to
object storage. It is recommended to configure all privileges
related to library installation with read-only permissions.
Databricks recommends using Azure service principals to
manage access to libraries stored in Azure Data Lake
Storage Gen2. To install a library stored in cloud object
storage to a cluster, complete the following steps:

e Select a cluster from the list in the clusters UI.

e Select the Libraries tab.

» Select the DBFS/ADLS option.

e Provide the full URI path to the library object (for
example, abfss://container-name@storage-account-
name.dfs.core.windows.net/path/to/library.whl).

e Click Install.

User can use %pip to install custom Python wheels stored in
object storage scoped to a notebook isolated
SparkSession. To use this method, user must either store
libraries in publicly readable object storage or use a pre-
signed URL. Jar libraries cannot be installed in the notebook.
User must install Jar libraries at the cluster level.



Databricks Repos

Databricks Repos is a visual Git client and APl in Azure
Databricks. Databricks Repos provides source control for
projects by integrating with Git providers.

In Databricks Repos, user can use Git functionality to:

« Clone, push to, and pull from a remote Git
repository.

« Create and manage branches for development
work, including merging, rebasing, and resolving
conflicts.

« Create notebooks and edit notebooks and other
files.

« Visually compare differences upon commit.

Databricks supports the following Git providers:

. GitHub and GitHub AE
. Bitbucket Cloud

. GitLab

« Azure DevOps

Databricks Repos also supports Bitbucket Server, GitHub
Enterprise Server, and GitLab self-managed integration, if
the server is internet accessible.

Databricks Repos use a personal access token (PAT) or an
equivalent credential to authenticate with the Git provider.
To use Repos, user first need to add Git PAT and Git provider
username to Databricks.

To modify a public remote repository, or to clone or modify a
private remote repository, user must have a Git provider



username and personal access token with read and write
permissions for the remote repository.

Connect to a GitHub repo using a personal access

token

In GitHub, follow these steps to create a personal access
token that allows access to the repositories:

Login to GitHub portal

In the upper-right corner of any page, click the
profile photo, then click Settings.

Click Developer settings shown the left side items.
Click the Personal access tokens tab.

Click the Generate new token button.

Enter a token description.

Select the repo scope and workflow scope and click
the Generate token button. Workflow scope is
needed in case the repository has GitHub Action
workflows.

Settings Developer settings

Onuth Apps New personal access token
GitHUD Apps

Personal access tokens function like ordinary OAuth access tokens. They can be used instead of & passwerd for
Personal access tokens Git over HTTPS, or can be used to authenticate 1o the AP| aver Bazic Authentication

Token description

‘What's this taken for?

Select scopes

Scopes defline the access for personal tokens. Read more about DAUth scopes

8 repo Full ol of private repositories
repostatus

repn

Copy the token to clipboard. This token will be used
in Databrick for connecting to Git.



Add or edit Git credentials in Databricks

« Open Databrick workspace

« Select the down arrow next to the account name at
the top right of screen, and then select User
Settings .

« Select the Git Integration tab.

« In the Git provider drop-down, select the provider’s
name.

« In the box provided, add Git user name or email.

« In the Token box, add a personal access token
(PAT) or other credentials from Git provider (as done
in the previous section)

« Databrick connection of Azure Devops, GitLab,
Bitbucket can be done in similar way.

Git operation with repos
User can perform many Git operations with Databricks
Repos.

Add a repo and connect remotely later
User can create a new repo in Databricks and add the
remote Git repository URL later.

« To create a new repo not linked to a remote Git
repository, click the Add Repo button. User can
access Repo button through:

Workspace —» Repo = Right click on the user's mail
id - Create - Repo.

Deselect Create repo by cloning a Git repository, enter
a name for the repo, and then click Create Repo.



Add Repo

Laeation (1)
fReposl

| 1) Create repo by cloning & Git repositary

Git repasitany URL ()

Repository name

Gt proveders

« When user is ready to add the Git repository URL,
click the down arrow next to the repo name in the

workspace

open

Repo menu, and

select Git... to open the Git dialog.

Repos »

Name &

[§ db-cnly-repe
Git...

dolly & feature
Open in new tab

#

7]

mi-experiments | create

mi-notebooks  Import

#

Export
mi-notebooks-du

Copy

[% nb-test & worl
Rename

7]

Share

Move to Trash

« In the Git repo URL field, enter the URL for the
remote repository and select the Git provider from
the drop-down menu. Click Save.
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Clone a repo connected to a remote repo

. In the sidebar, select Workspace > Repos.
« Click Add Repo.

Workspace Repas Provide feedback [4

» [l Home Lcom : Shara
-
» B Warkspace Name Type Owner Create d
« O Repos OF db-only-repo Repo . Mppzo2z
> [ com [ dolly % featurs_a Repo . 4f19j2023
» [R db-only-repo
> [§ dolly [ mi-sxperiments b main Repa nmzozz

> [F mil-experiments

[F mi-nolebocks Repo . Wzozz
» [F mi-noteboal kb ale e IRk

-]
-3
W

[§ mi-notebocks-dup By main Rapo 511/2023
> [F nb-test

« In the Add Repo dialog, select Create repo by
cloning a Git repository and enter the repository
URL

« Select Git provider from the drop-down menu,
optionally change the name to use for the
Databricks repo, and click Create Repo. The
contents of the remote repository are cloned to the
Databricks repo.



Add Repo X

Location O
JReposft 1

Create repo by cloning a Git repository

Git repository URL (D) Git provider

https:/fgithub.com/ ‘ml-notebooks GitHub v

Repository name

mi-notebooks

Advanced

Cancel Create Repo

Access the Git dialog

User can access the Git dialog from a notebook or from the
Databricks Repos browser.

« From a notebook, click the button next to the name

of the notebook that identifies the current Git
branch.

databricks-quickstart-notebook hmain  Python v
B Runall ® Connect v Schedule v -~
File Edit View Run Help Last edit was now Give feedback

« From the Databricks Repos browser, click the button
to the right of the repo name. User can also right-
click the repo name and select Git... from the menu.

Workspace

ack 2

Repos Provida feadb
> (2 Home .com O o - |

+ I Workspacs HName « Type Owner Ereated
- [ ct-onby-repn Rapes 3d. 1022
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> [ cam R d Barn 1@, 4182052
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» O dolly () Iad.. 14112022
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» [ mi-notab ooks R mi-notabooks Craata 5 ., 10
= il " -
+ OR ml-notabooks-dup RN v Bon Import 1Bd,. EN1/2023
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e Export * @d. S
Copy 2
Renama
Share

Mews 10 Trash



« To pull changes from the remote Git repository,
click Pull button in the Git dialog. Notebooks and
other files are updated automatically to the latest
version in remote repository.

Rebase a branch on another branch
To rebase a branch on another branch:

« From the Branch menu in the Repos Ul, select the
branch user wants to rebase.

o Select Rebase from the menu as shown below.

dolly Provida feadback 04

@ You can now schedule a job from your repo. Visit Create job and pick “Git” for the Source field, Learn more, Don't show th

8 Branch: featuse_a - Creale Braneh

« Select the branch to which user wants to rebase on.
The rebase operation integrates changes from the
branch user chooses here into the current branch.



Databricks File System
(DBFS)

The Databricks File System (DBFS) is a distributed file
system mounted into an Databricks workspace and
available on Databricks clusters.

DBFS provides convenience by mapping cloud object
storage URIs to relative paths.

. Allows user to interact with object storage using
directory and file semantics instead of cloud-
specific APl commands.

. Allows user to mount cloud object storage locations.

. It simplifies the process of persisting files to object
storage, allowing virtual machines and attached
volume storage to be safely deleted on cluster
termination.

« It provides a convenient location for storing init
scripts, JARs, libraries, and configurations for cluster
initialization.

« It provides a convenient location for checkpoint files
created during model training.

Interact with files in cloud-based object storage
DBFS provides many options for interacting with files in
cloud object storage:

e How to work with files on Azure Databricks

e List, move, copy, and delete files with Databricks
Utilities

« Browse files in DBFS

e Upload files to DBFS with the Ul



e Interact with DBFS files using the Databricks CLI
e Interact with DBFS files using the Databricks REST
API

Mount object storage

Mounting object storage to DBFS allows users to access
objects in object storage as if they were on the local file
system. Mounted data does not work with Unity Catalog.
Databricks recommends migrating away from using mounts.

Databricks mounts create a link between a workspace and
cloud object storage, which enables user to interact with
cloud object storage. Mounts work by creating a local alias
under the /mnt directory that stores the following
information:

« Location of the cloud object storage.

« Driver specifications to connect to the storage
account or container.

« Security credentials required to access the data.

The syntax for mounting is:

dbutils.fs.mount(

source: str,

mount_point: str,

encryption_type: Optional[str] = "",

extra_configs: Optional[dict[str:str]] = None)

The source specifies the URI of the object storage. The
mount_point specifies the local path in the /mnt directory.
Some object storage sources support an optional
encryption_type argument. For some access patterns, user
can pass additional configuration specifications as a
dictionary to extra_configs. Running the following code
create a mount point.



configs = {"fs.azure.account.auth.type": "OAuth",
"fs.azure.account.oauth.provider.type":

"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider",
“fs.azure.account.oauth2.client.id": "<application-id>",
"fs.azure.account.oauth2.client.secret": dbutils.secrets.get(scope="

<scope-name>" key="<service-credential-key-name>"),
"fs.azure.account.oauth2.client.endpoint":

"https://login.microsoftonline.com/<directory-id>/oauth2/token"}

dbutils.fs.mount(

source = "abfss://<container-name>@<storage-account-
name>.dfs.core.windows.net/",

mount_point = "/mnt/<mount-name>",

extra_configs = configs)

« <application-id> with the Application (client) ID for

the Azure Active Directory application.

. <scope-name> with the Databricks secret scope

Nname.

« <service-credential-key-name> with the name of the

key containing the client secret.

« <directory-id> with the Directory (tenant) ID for the

Azure Active Directory application.

« <container-name> with the name of a container in

the ADLS Gen2 storage account.

. <storage-account-name> with the ADLS Gen2

storage account name.

« <mount-name> with the name of the intended mount

point in DBFS.

To unmount a mount point, use the following command:



dbutils.fs.unmount("/mnt/<mount-name=>")

DBFS root
The DBFS root is the default storage location for an
Databricks workspace, provisioned as part of workspace
creation in the cloud account containing the Databricks
workspace.

DBFS is a file system used for interacting with data in cloud
object storage, but the DBFS root is a cloud object storage
location. DBFS is used to interact with the DBFS root, but
they are distinct concepts, and DBFS has many applications
beyond the DBFS root.

DBFS work with Unity Catalog

Unity Catalog introduces a number of new configurations
and concepts that approach data governance entirely
differently than DBFS.

Databricks recommends against using DBFS and mounted
cloud object storage for most use cases in Unity Catalog-
enabled Databricks workspaces. In some scenarios, user
should use mounted cloud object storage.

The DBFS root is the default location for storing files
associated with a number of actions performed in the Azure
Databricks workspace, including creating managed tables in
the workspace-scoped hive_metastore.

Clusters configured with Single User access mode have full
access to DBFS, including all files in the DBFS root
and mounted data. DBFS root and mounts are available in
this access mode, making it the choice for ML workloads
that need access to Unity Catalog datasets.

Databricks recommends wusing service principals with
scheduled jobs and Single User access mode for production
workloads that need access to data managed by both DBFS
and Unity Catalog.



Shared access mode combines Unity Catalog data
governance with Azure Databricks legacy table ACLs. Access
to data in the hive_metastore is only available to users that
have permissions explicitly granted.

Each Unity Catalog metastore has an object storage account
configured by an Azure Databricks account administrator.
Unity Catalog uses this location to store all data and
metadata for Unity Catalog-managed tables.

It is possible to load existing storage accounts into Unity
Catalog using external locations. For greatest security,
Databricks recommends only loading storage accounts to
external locations if all other storage credentials and access
patterns have been revoked.

User should never load a storage account used as a DBFS
root as an external location in Unity Catalog.

Default Location

Each Databricks workspace has several directories
configured in the DBFS root storage container by default.
Some of these directory’s link to locations on the DBFS root,
while others are virtual mounts.

. [Filestore: Data and libraries uploaded through the
Azure Databricks Ul go to the /Filestore location by
default.

- /databricks-datasets: Databricks provides a number of
open source datasets in this directory

« /databricks-results: /databricks-results stores files
generated by downloading the full results of a query

« /databricks/init: This directory contains legacy global
init scripts.

« /Juser/hive/warehouse: Azure Databricks stores
managed tables in the hive metastore here by
default.



FileStore

FileStore is a special folder within DBFS where user can
save files and have them accessible to web browser. User
can use FileStore to:

. Save files, such as images and libraries.

. Save output files that user wants to download to local
desktop.

« Upload CSVs and other data files your local desktop to
process on Databricks.

To Save a file to FileStore, user can use dbutils.fs.put to
write arbitrary text files to the /FileStore directory in DBFS:

dbutils.fs.put("/FileStore/my-stuff/my-file.txt", “This is a sample text file")

Browse files in DBFS

User can browse and search for DBFS objects using the
DBFS file browser. A workspace admin user must enable the
DBFS browser interface before user can use it. The steps
are:

. Click Data/Catalog in the sidebar.
« Click the Browse DBFS button at the top of the page.

The browser displays DBFS objects.



Work with Files

User can work with files on DBFS, the local driver node of
the cluster, cloud object storage, external locations, and in
Databricks Repos. User can integrate other systems, but
many of these do not provide direct file access to
Databricks.

The DBFS root is the root path for Spark and DBFS
commands. These include:

« Spark SQL

« DataFrames
. dbutils.fs

e %fs

Access files on the DBFS root

When using commands that default to the DBFS root, user
can use the relative path or include dbfs:/. The commands
will be:

Using SQL.:

SELECT * FROM parquet.” <path>";
SELECT * FROM parqguet.” dbfs:/<path>"

Using Python:

df = spark.read.load("<path=>")

df.write.save("<path>")



Optimization &
Performance

Databricks provides many optimizations ranging from large-
scale ETL processing to ad-hoc, interactive queries. Many of
these optimizations take place automatically. User gets their
benefits simply by using Databricks.

Databricks configures default configuration values that
optimize most workloads. In some cases, changing
configuration settings improves performance. Use the latest
Databricks Runtime to leverage the newest performance
enhancements.

Optimize performance with caching

Databricks uses disk caching to accelerate data reads by
creating copies of remote Parquet data files in nodes’ local
storage. The data is cached automatically whenever a file
has to be fetched from a remote location. Successive reads
of the same data are then performed locally, which results
in significantly improved reading speed. Cache is of two
types:

« Disk cache
« Apache Spark cache

The Databricks disk cache differs from Apache Spark
caching. Databricks recommends using automatic disk
caching for most operations.

When the disk cache is enabled, data that must be fetched
from a remote source is automatically added to the
cache. This process is fully transparent and does not
require any action. To preload data into the cache
beforehand, user can use the CACHE SELECT



command. When user uses the Spark cache, user must
manually specify the tables and queries to cache.

The disk cache contains local copies of remote data. It can
improve the performance of a wide range of queries, but
cannot be used to store results of query. The Spark cache
can store the result of any query data and data stored in
formats other than Parquet (such as CSV, JSON, and ORC).

The data stored in the disk cache can be read and operated
on faster than the data in the Spark cache. This is because
the disk cache uses efficient decompression algorithms and
outputs data in the optimal format for further processing.
Disk caching does not use system memory. Due to the high
read speeds of modern SSDs, the disk cache has no
negative impact on its performance.

The following table summarizes the key differences between
disk and Apache Spark caching:

Feature disk cache Apache Spark
cache
Stored as Local files on a In-memory
worker node. blocks, but it
depends on
storage level.
Applied to Any Parquet table | Any DataFrame

stored on ABFS and | or RDD.
other file systems.

Triggered Automatically, on Manually,
the first read (if requires code
cache is enabled). |changes.

Evaluated Lazily Lazily

Availability Can be enabled or | Always

disabled with available.




configuration flags

The disk cache automatically detects when data files are
created, deleted, modified, or overwritten and updates its
content accordingly. There is no need to explicitly invalidate
cached data. Any stale entries are automatically invalidated
and evicted from the cache.

To explicitly select a subset of data to be cached, use the
following syntax:

CACHE SELECT column_name[column_name, ...] FROM [db_name.]table_name [

WHERE boolean_expression ]

The recommended way to use disk caching is to choose a
worker type with SSD volumes when user configures the
cluster. Such workers are enabled and configured for disk
caching.

Databricks recommends that user choose cache-accelerated
worker instance types for clusters. Such instances are
configured optimally for the disk cache.

Configure disk usage

To configure how the disk cache uses the worker nodes’
local storage, specify the following Spark
configuration settings during cluster creation:

« Spark.databricks.io.cache.maxDiskUsage: Disk
space per node reserved for cached data in bytes

« Sspark.databricks.io.cache.maxMetaDataCache: Disk
space per node reserved for cached metadata in
bytes

« Sspark.databricks.io.cache.compression.enabled:
Should the cached data be stored in compressed
format.



Example configuration:

spark.databricks.io.cache.maxDiskUsage 50g
spark.databricks.io.cache.maxMetaDataCache 1g

spark.databricks.io.cache.compression.enabled false

Enable or disable the disk cache.

To enable and disable the disk cache, run the following code
in scala. Disabling the cache does not result in dropping the
data that is already in the local storage. Instead, it prevents
queries from adding new data to the cache and reading data
from the cache.

spark.conf.set("spark.databricks.io.cache.enabled", "[true | false]")

Dynamic file pruning

Dynamic file pruning, can significantly improve the
performance of many queries on Delta Lake tables. Dynamic
File Pruning (DFP), a new data-skipping technique, which
can significantly improve queries with selective joins on
non-partition columns on tables in Delta Lake, now enabled
by default in Databricks Runtime.

Dynamic file pruning is controlled by the following Apache
Spark configuration options:

« Spark.databricks.optimizer.dynamicFilePruning:
Default is true. When set to false, dynamic file
pruning will not be in effect.

. spark.databricks.optimizer.deltaTableSizeThreshold:
Default is 10,000,000,000 bytes (10 GB).
Represents the minimum size (in bytes) of the
Delta table on the probe side of the join required to
trigger dynamic file pruning. If the probe side is not
very large, it is probably not worthwhile to push



down the filters and user can just simply scan the
whole table.

« Sspark.databricks.optimizer.deltaTableFilesThreshold
: It represents the number of files of the Delta table
on the probe side of the join required to trigger
dynamic file pruning. When the probe side table
contains fewer files than the threshold value,
dynamic file pruning is not triggered. If a table has
only a few files, it is probably not worthwhile to
enable dynamic file pruning.

Low shuffle merge

The MERGE command is used to perform simultaneous
updates, insertions, and deletions from a Delta Lake table.
Azure Databricks has an optimized implementation
of MERGE that improves performance substantially for
common workloads by reducing the number of shuffle
operations.

Databricks low shuffle merge provides better performance
by processing unmodified rows in a separate, more
streamlined processing mode, instead of processing them
together with the modified rows. As a result, the amount of
shuffled data is reduced significantly, leading to improved
performance. In low shuffle merge, the unmodified rows are
instead processed without any shuffles, expensive
processing, or other added overhead. This provides
optimized performance.

Low shuffle merge tries to preserve the existing data layout
of the unmodified records, including Z-order optimization on
a best-effort basis. The updated or newly inserted data may
not be optimal, so it may still be necessary to run
the OPTIMIZE or OPTIMIZE ZORDER BY commands.



Low shuffle merge is enabled by default in Databricks
Runtime 10.4 and above. In earlier supported Databricks
Runtime versions it can be enabled by setting the

configuration:
spark.databricks.delta.merge.enableLowShuffle to true.



Delta Lake

Delta Lake is the optimized storage layer that provides the
foundation for storing data and tables in the Databricks
Lakehouse Platform. Delta Lake is open source software that
store data as Parquet files with a file-based transaction log
for ACID transactions.

Delta Lake is the default storage format for all operations on
Databricks. Unless otherwise specified, all tables on
Databricks are Delta tables. All tables on Databricks are
Delta tables by default. Whether user is using Apache
Spark DataFrames or SQL, user gets all the benefits of Delta
Lake just by saving data to the lakehouse with default
settings.

Delta Lake operations

Create a table

All tables created on Databricks use Delta Lake by default.
Using python:

# Load the data from its source.
df = spark.read.load("/databricks-datasets/learning-spark-

v2/people/people.delta")

# Write the data to a table.
table_name = "people_data"

df.write.saveAsTable(table_name)

Using SQL:

DROP TABLE IF EXISTS people_data;

CREATE TABLE IF NOT EXISTS people_data



AS SELECT * FROM delta." /databricks-datasets/learning-spark-
v2/people/people.delta’;

The above operations create a new managed table by
using the schema that was inferred from the data. For
managed tables, Databricks determines the location for the
data.

To get the location, use the below SQL command:

DESCRIBE DETAIL people_data;

Upsert to a table

To merge a set of updates and insertions into an existing
Delta table, user can use the MERGE INTO statement. For
example, the following statement takes data from the
source table(people_updates) and merges it into the target
Delta table(people_data).

When there is a matching row in both tables, Delta Lake
updates the data column using the given expression. When
there is no matching row, Delta Lake adds a new row. This
operation is known as an upsert.

MERGE INTO people_data

USING people_updates

ON people_data.id = people_updates.id
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *;

If user specifies *, this update or insert all columns in the
target table. This assumes that the source table has the
same columns as those in the target table, otherwise the
query will throw an error.

User must specify a value for every column in table while
performing an INSERT operation.



Read a table
User can access data in Delta tables by the table name or
the table path, as shown in the following examples:

df = spark.read.table(table_name)
display(df)

User can also read using the table path:

people_df = spark.read.load(table_path)
display(people_df)

Using SQL, User can read using the below code:

SELECT * FROM people_data
SELECT * FROM delta.” <path-to-table>";

Write to a table
To atomically add new data to an existing Delta table,
use append mode

df.write.mode("append").saveAsTable("people_data")

To overwrite any existing table:

df.write.mode("overwrite").saveAsTable("people_data")

Update a table

User can update data that matches a condition in a Delta
table. For example, in a table named people data, to
change an abbreviation in the gender column from M or F to
Male or Female, user can run the following:

Using SQL:

UPDATE people_data SET gender = 'Female' WHERE gender = 'F/;
UPDATE people_data SET gender = 'Male' WHERE gender = 'M’;



For a table located at a path at /tmp/delta/people-data, to
change an abbreviation in the gender column from M or F to
Male or Female, user can run the following:

UPDATE delta.” /tmp/delta/people-data” SET gender='Female' WHERE
gender="F';
UPDATE delta. /tmp/delta/people-data” SET gender = 'Male' WHERE gender='M’;

Using Python:

from delta.tables import *

from pyspark.sqgl.functions import *
deltaTable = DeltaTable.forPath(spark, '/tmp/delta/people-data’)

deltaTable.update(
condition = col('gender') == 'M",
set = {'gender’: lit('‘Male')}

)

Delete from a table

User can remove data that matches a condition from a Delta
table. For instance, in a table named people-data, to delete
all rows corresponding to people with a value in the
birthDate column from before 1955, user can use the below
code:

Using SQL:
DELETE FROM peoplel0m WHERE birthDate < '1955-01-01'

In a table at path /tmp/delta/people-data, to delete all rows
corresponding to people with a value in
the birthDate column from before 1955, user can use the
below code:

DELETE FROM delta. /tmp/delta/people-10m~ WHERE birthDate < '1955-01-01"



Using Python:

from delta.tables import *

from pyspark.sql.functions import *

deltaTable = DeltaTable.forPath(spark, '/tmp/delta/people-data’)
deltaTable.delete(col('birthDate') < '1960-01-01')

Display table history

To view the history of a table, use the DESCRIBE
HISTORY statement, which provides information, including
the table version, operation, user, and so on, for each write
to a table.

DESCRIBE HISTORY people_data

Time travel

Delta Lake time travel allows to query an older snapshot of
a Delta table. To query an older version of a table, specify a
version or timestamp in a SeLecT statement. For example, to
query version 0 from the history above, use:

SELECT * FROM people_data VERSION AS OF 0

To query based on timestamp, use:

SELECT * FROM people_data TIMESTAMP AS OF '2021-02-25 00:37:58'

Using Python, the above objective can be achieved using:

dfl = spark.read.format('delta').option(‘'timestampAsOf', '2021-02-
25').table("people_data")

df=spark.read.format('delta').option('versionAsOf',0).table("people _data")

Optimize a table



Once user has performed multiple changes to a table, user
might have a lot of small files. To improve the speed of read
queries, user can use opTiMizE to collapse small files into
larger ones:

OPTIMIZE people_data

Z-order by columns

To improve read performance further, user can co-locate
related information in the same set of files by Z-
Ordering. This co-locality reduces the amount of data that
needs to be read. To Z-Order data, user should specify the
columns to order on in the ZORDER BY clause. For example,
to co-locate by gender, run:

OPTIMIZE people_data
ZORDER BY (gender)

Clean up snapshots with VACUUM
To clean up old snapshots. User can do this by running
the VACUUM command:

VACUUM people data

Delta Lake table history

Each operation that modifies a Delta Lake table creates a
new table version. User can use history information to audit
operations, rollback a table, or query a table at a specific
point in time using time travel.

User can retrieve information including the operations, user,
and timestamp for each write to a Delta table by running
the history command. Table history retention is determined
by the table setting delta.logRetentionDuration, which is 30
days by default.

Using the below SQL command, user can get the history of
the table:



DESCRIBE HISTORY eventsTable

Delta Lake time travel
Delta Lake time travel supports querying previous table
versions based on timestamp or table version. SQL
command to retrieve the data based on timestamp or
version is shown below:

SELECT * FROM people_data TIMESTAMP AS OF '2020-12-18T722:15:12.013Z'
SELECT * FROM delta." /tmp/delta/people_data” VERSION AS OF 5

Using Python, user can achieve the same using the below
command:

dfl = spark.read.option("timestampAsOf", "2020-12-18").table("people_data")
df2 = spark.read.option("versionAsOf", 5).load("/tmp/delta/people_data")

Delta Lake records table versions as JSON files within
the delta log directory, which is stored alongside table
data.

To query a previous table version, user must retain both the
log and the data files for that version. The default retention
value is 7 days. Data files are deleted when vacuum runs
against a table. To increase the data retention threshold for
Delta tables, user must configure the following table
properties:

. delta.logRetentionDuration = "interval <interval>".
It controls how long the history for a table is kept.
The default is “interval 30 days”.

« delta.deletedFileRetentionDuration = "interval
<interval>". It will retain the files for this interval
duration. The default is “interval 7 days”.

Restore a Delta table to an earlier state



User can restore a Delta table to its earlier state by using
the REsTORE command. A Delta table internally maintains
historic versions of the table that enable it to be restored to
an earlier state. User can restore the table to earlier version
or timestamp using the query:

RESTORE TABLE db.target_table TO VERSION AS OF <version>
RESTORE TABLE delta. /data/target/” TO TIMESTAMP AS OF <timestamp>

Vacuum unused data files

User can remove data files no longer referenced by a Delta
table that are older than the retention threshold by running
the VACUUM command on the table.
Running vacuum regularly helps in reducing the cloud
storage cost by deleting unused files. The syntax for running
vacuum is:

VACUUM tablename

The above command will vacuum files which are not
required by versions older than the default retention period.

VACUUM '/data/events' -- vacuum files in path-based table

VACUUM delta. /data/events/” RETAIN 100 HOURS -- vacuum files more than
100 hours old

VACUUM eventsTable DRY RUN -- do dry run to get the list of files to be deleted

Databricks recommends regularly running VACUUM on all
tables to reduce excess cloud data storage costs. The
default retention threshold for vacuum is 7 days. It is
recommended that user sets a retention interval to be at
least 7 days, because old snapshots and uncommitted files
can still be in use by concurrent readers or writers to the
table.



Optimize Tables

Delta Lake on Azure Databricks can improve the speed of
read queries from a table. One way to improve this speed is
to coalesce small files into larger ones.

User can trigger compaction by running
the opTiMizE command. User can achieve this for events
table using:

--path-based table
OPTIMIZE delta." /data/events’

OPTIMIZE events

Using Python:
from delta.tables import *

deltaTable = DeltaTable.forPath(spark, "/data/events")

deltaTable.optimize().executeCompaction()

If User has a large amount of data and only wants to
optimize a subset of it, user can specify an optional partition
predicate using WHERE:

OPTIMIZE events WHERE date >= '2020-12-18'

Using Python:
from delta.tables import *

deltaTable = DeltaTable.forName(spark, "events")

deltaTable.optimize().where("date='2020-12-18"").executeCompaction()

opTIMIZE makes no data related changes to the table, so a
read before and after an opTimize has the same results.

When user chooses to run opTiMizE, there is a trade-off
between performance and cost. Running opTiMizE command
incur a higher cost because of the increased resource
usage. Running OPTIMIZE command is a CPU intensive



operation doing large amounts of Parquet decoding and
encoding SO Databricks recommends Compute
optimized instance types for cluster.

Z-order indexes

Z-ordering is a technique to co-locate related information in
the same set of files. This co-locality is automatically used
by Delta Lake on Azure Databricks data-skipping algorithms.
This behaviour dramatically reduces the amount of data
that Delta Lake on Azure Databricks needs to read. To Z-
order data, user should specify the columns to order on in
the ZORDER BY clause:

If user expects a column to be commonly used in query
predicates and if that column has high cardinality (many
distinct values), then use zORDER BY.

OPTIMIZE events
ZORDER BY (eventType)

User can specify multiple columns for ZzORDER BY as a
comma-separated list. However, the effectiveness of the
locality drops with each extra column.

Change Data Feed

Change data feed allows Databricks to track row-level
changes between versions of a Delta table. When enabled
on a Delta table, the runtime records change events for all
the data written into the table. This includes the row data
along with metadata indicating whether the specified row
was inserted, deleted, or updated.

User can read the change events in batch queries using
Spark SQL, Apache Spark DataFrames, and Structured
Streaming.

Change data feed works in tandem with table history to
provide change information so change data feed on cloned



tables doesn’'t match that of the original table. This is
because the cloned table has a separate history.

Use cases
Change data feed is not enabled by default. Some of the use
cases that improves the performance are:

. Silver and Gold tables: Improve Delta Lake
performance by processing only row-level changes
to accelerate and simplify ETL and ELT operations.

« Materialized views: Create up-to-date, aggregated
views of information for use in Bl and analytics
without having to reprocess the full underlying
tables, instead updating only where changes have
come through.

Enable change data feed
User must explicitly enable the change data feed option
using one of the following methods:

« New table: Set the table
property delta.enableChangeDataFeed = true in the CREATE
TABLE command.

CREATE TABLE student (id INT, name STRING, age INT) TBLPROPERTIES

(delta.enableChangeDataFeed = true)

« Existing table: Set the table property
delta.enableChangeDataFeed = true In the ALTER TABLE
command.

ALTER TABLE myDeltaTable SET
TBLPROPERTIES(delta.enableChangeDataFeed = true)



. All new tables:

set spark.databricks.delta.properties.defaults.enableChangeDataFeed =

true;

Read changes in batch queries

To read the changes, user can provide either version or
timestamp for the start and end. To read the changes from a
particular start version to the latest version of the table,
specify only the starting version or timestamp.

Using SQL:

-- capture changes from version 0 to 10
SELECT * FROM table_changes('tableName’, 0, 10)

-- Capture changes between timestamps
SELECT * FROM table_changes('tableName', '2021-04-21 05:45:46', '2021-05-21
12:00:00")

-- providing only the startingVersion/timestamp. It will capture changes from this
version to latest version

SELECT * FROM table_changes('tableName’, 5)

-- path based tables
SELECT * FROM table_changes by path('\path’, '2022-08-21 05:50:46")

Using Python:

spark.read.format("delta") \
.option("readChangeFeed", "true") \
.option("startingVersion", 0) \
.option("endingVersion", 10) \
table("myDeltaTable")



spark.read.format("delta") \
.option("readChangeFeed", "true") \
.option("startingTimestamp", '2021-04-21 05:45:46') \
.option("endingTimestamp", '2021-05-21 12:00:00') \
table("myDeltaTable")

# providing only the startingVersion/timestamp

spark.read.format("delta") \
.option("readChangeFeed", "true") \
.option("startingVersion", 5) \

table("myDeltaTable")

# path based tables

spark.read.format(“delta") \
.option("readChangeFeed", "true") \
.option("startingTimestamp", '2022-08-21 05:50:46') \
Joad("pathToMyDeltaTable")

Read changes in streaming queries

# providing a starting version

spark.readStream.format("delta") \
.option("readChangeFeed", "true") \
.option("startingVersion", 5) \
table("myDeltaTable")

# providing a starting timestamp

spark.readStream.format("delta") \
.option("readChangeFeed", "true") \
.option("startingTimestamp", "2022-06-21 05:35:43") \
Joad("/pathToMyDeltaTable")



#Not providing a starting version/timestamp will result in the latest snapshot
being fetched first
spark.readStream.format("delta") \

.option("readChangeFeed", "true") \

table("myDeltaTable")

To get the change data while reading the table, set the
option readChangeFeed to true.

The startingVersion or startingTimestamp are optional and if
not provided the stream returns the latest snapshot of the
table at the time of streaming as an INSERT and future
changes as change data. When user reads from the change
data feed for a table, the schema for the latest table version
is used.

Table constraint

Databricks supports standard SQL constraint management
clauses. All constraints on Databricks require Delta Lake.
Databricks supports two types of constraint:

. NOT NULL: indicates that values in specific
columns cannot be null.

CREATE TABLE people_data (
id INT NOT NULL,
firstName STRING,
middleName STRING NOT NULL,
lastName STRING,
gender STRING,
birthDate TIMESTAMP,
salary INT
) USING DELTA;



« CHECK: indicates that a specified boolean
expression must be true for each input row. User
can add constraint on the table.

ALTER TABLE people_data ADD CONSTRAINT dateWithinRange CHECK
(birthDate > '1900-01-01");

Upsert into a Delta Lake table using merge

User can upsert data from a source table, view, or
DataFrame into a target Delta table by using
the MERGE SQL operation. Delta Lake supports inserts,
updates, and deletes in MERGE.

Suppose user has a source table named source or a source
path that contains new data for a target table
named target or a target path. Some of these new records
may already be present in the target data. To merge the
new data, user wants to update rows where the key is
already present in target table and insert the new rows
where no matching key is present. User can run the
following query using SQL:

MERGE INTO target

USING source

ON source.key = target.key

WHEN MATCHED THEN

UPDATE SET *

WHEN NOT MATCHED THEN

INSERT *

WHEN NOT MATCHED BY SOURCE THEN

DELETE

There are three conditions in above query:



MATCHED: - The target table has some rows which
are present in source table based on key. These
rows on target table will be updated with source
rows values.

NOT MATCHED: The source table has some rows
that do not exist in the target table based on key.
These rows will be inserted in target table.

NOT MATCHED BY SOURCE: The target table has
some rows that do not exist in the source table.
These rows will be deleted from the target tables.
User needs to use this condition when user wants to
synchronize the target table with the data from the
source table.

The above code can be written in python like:

(targetDF

)

.execute()

.merge(sourceDF, "source.key = target.key")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.whenNotMatchedBySourceDelete()

In case User needs to update some fields then user can
specify the fields values as well.

MERGE INTO people_data

USING people_data_updates

ON people_data.id = people_data_updates.id
WHEN MATCHED THEN

UPDATE SET

firstName = people_data_updates.firstName,

middleName = people_data_updates.middleName,



lastName = people_data_updates.lastName
WHEN NOT MATCHED
THEN INSERT (
id,
firstName,
middleName,
lastName
)
VALUES (
people _data updates.id,
people_data_updates.firstName,
people_data_updates.middleName,

people_data_updates.lastName

Custom Metadata

User can enrich Delta Lake tables with custom metadata.
User can use fields in the Delta Lake transaction log to add
custom tags to a table or messages for an individual
commit.

User can specify user-defined strings as metadata in
commits by using the DataFrameWriter
option userMetadata.

df.write.format("delta") \
.mode("overwrite") \
.option("userMetadata", "fixing-incorrect-data") \

.save("/tmp/delta/people_data")

This user-defined metadata is readable through describe
history command.



User can store its own metadata as a table property using
TBLPROPERTIES in CREATE and ALTER.

ALTER TABLE people_data SET TBLPROPERTIES (‘department' = 'accounting')

User can then display that metadata:

-- Show just the 'department' table property.
SHOW TBLPROPERTIES people_data (‘department')

Generated columns

Delta Lake supports generated columns which are a special
type of column whose values are automatically generated
based on a user-specified function over other columns in the
Delta table. The column value is automatically computed
based on the user-defined function applied for the
generated column.

CREATE TABLE people_data (
id INT,
firstName STRING,
middleName STRING,
birthDate TIMESTAMP,
yearofBirth INT GENERATED ALWAYS AS (YEAR(birthDate))

)
PARTITIONED BY yearofBirth

User can define identity columns in delta lake table. Delta
Lake identity columns are a type of generated column that
assign unique values for each record inserted to a
table. Identity columns only support the BIGINT type. User
can optionally specify a starting value and a step size.

Tables cannot be partitioned by an identity column, and user
cannot perform update operations on identity columns.



Declaring an identity column on a Delta table disables
concurrent transactions. In use cases, only use identity
columns where concurrent writes to the target table are not
required.

l[dempotent writes

Sometimes a job that writes data to a Delta table is
restarted due to various reasons e.g., job encounters a
failure. The failed job may or may not have written the data
to Delta table before terminating. In the case where the
data is written again, the restarted job writes the same data
to the Delta table which results in duplicate data.

To address this, Delta tables support the
following DataFrameWriter options to make the writes
idempotent:

. txnAppld: A unique string that user can pass
on each DataFrame write.

« txnVersion: A monotonically increasing number that
acts as transaction version. This number needs to
be unique for data that is being written to the Delta
table(s). Any subsequent restarts of the same job
need to have the same value for txnVersion.

The above combination of options needs to be unique for
each new data that is being ingested into the Delta table

and the txnVersion needs to be higher than the last data
that was ingested into the Delta table.

app_id = # A unique string that is used as an application ID.

Version = # A monotonically increasing number that acts as transaction version.

dataFrame.write.option("txnVersion", version).option("txnAppld",

app_id).save(...)



Delta Lake schema validation

Delta Lake automatically validates that the schema of the
DataFrame being written is compatible with the schema of
the table. Delta Lake uses the following rules to determine
whether a write from a DataFrame to a table is compatible:

. All DataFrame columns must exist in the target
table. If there are columns in the DataFrame not
present in the table, an exception is
raised. Columns present in the table but not in the
DataFrame are set to null.

« DataFrame column data types must match the
column data types in the target table.

. DataFrame columns name must be unique. Same
column name (even if it is case sensitive) can’t be
in dataframe.

Merge automatically validates that the schema of the data
generated by insert and update expressions are compatible
with the schema of the table. It uses the following rules for
compatibility:

« For update and insert actions, the specified target
columns must exist in the target Delta table.

. For updateAll and insertAll actions, the source
dataset must have all the columns of the target
Delta table. The source dataset can have extra
columns and they are ignored.

Selectively overwrite

Databricks leverages Delta Lake functionality to support for
selective overwrite. User can selectively overwrite only the
data that matches an arbitrary expression.



The following command replaces events in January in the
target table with the data in dataframe df which satisfies the
given condition.

df.write

.mode("overwrite")

.option("replaceWhere", "start _date >= '2020-01-01' AND end_date <= '2022-
01-31'")

.save("/tmp/delta/events")

Update Schema
Delta Lake lets user update the schema of a table. The
following types of changes are supported:

« Adding new columns (at arbitrary positions)
« Reordering existing columns
« Renaming existing columns

Partitioning Tables

Most tables with less than 1 TB of data do not require
partitions. Databricks recommends all partitions contain at
least 1 GB of data. Tables with fewer, larger partitions tend
to outperform tables with many smaller partitions.

Partitioning works well only for low or known cardinality
fields (for example, date fields or physical locations), but not
for fields with high cardinality such as timestamps.

Clone Delta Table

User can create a copy of an existing Delta Lake table on
Databricks at a specific version using the clone command.
Clones can be either deep or shallow.

Clone types

A deep clone is a clone that copies the source table data to
the clone target in addition to the metadata of the existing
table.



A shallow clone is a clone that does not copy the data to the
clone target. The table metadata is copied. Shallow clones
reference data files in the source directory of source table.
The metadata that is cloned includes: schema, partitioning
information, invariants, nullability.

In Databricks Runtime 13.1 and above, Unity Catalog
managed tables have support for shallow clones.

« Any changes made to either deep or shallow clones
affect only the clones themselves and not the
source table.

« Deep clones are expensive to create than Shallow
clones.

« Cloning a table is not the same as Create Table As
Select or CTAS. A clone copies the metadata of the
source table in addition to the data. Cloning also
has simpler syntax. User doesn’t need to specify
partitioning, format, invariants, nullability and so on
as they are taken from the source table.

« A cloned table has an independent history from its
source table. Time travel queries on a cloned table
do not work with the same inputs as they work on
its source table.

To Create Deep Clone:
CREATE TABLE delta. /data/target/” CLONE delta. /data/source/” -- Creates a

deep clone of /data/source at /data/target

CREATE OR REPLACE TABLE db.target_table CLONE db.source _table -- Replace
the target

CREATE TABLE IF NOT EXISTS delta. /data/target/" CLONE db.source_table -- No-
op if the target table exists



To Create Shallow clone:
CREATE TABLE db.target table SHALLOW CLONE delta."/data/source’

User can clone a specific version as well:
CREATE TABLE db.target_table SHALLOW CLONE delta."/data/source’ VERSION
AS OF version

CREATE TABLE db.target_table SHALLOW CLONE delta."/data/source’ TIMESTAMP
AS OF timestamp_expression

-- timestamp can be like “2022-02-01" or like date_sub(current_date(), 1)
Using Python:

from delta.tables import *

deltaTable = DeltaTable.forPath(spark, pathToTable) # path-based tables, or
deltaTable = DeltaTable.forName(spark, tableName) # Hive metastore-
based tables

deltaTable.clone(target, isShallow, replace) # clone the source at latest version

The following permissions are required for both deep and
shallow clones:

« SELECT permission on the source table.

« If wuser is using CLONE to create a new
table, CREATE permission on the database in which
user is creating the table.

« If user is using CLONE to replace a table, user must
have MODIFY permission on the table.

Any user that reads the deep clone must have read access
to the clone’s directory. To make changes to the clone, users
must have write access to the clone’s directory.



For Shallow clone, any user that reads the shallow clone
needs permission to read the files in the original table. To
make changes to the clone, users will need write access to
the clone’s directory.

Clone for data archiving

User can use deep clone to preserve the state of a table at a
certain point in time for archival purposes. User can create
deep clones to maintain an updated state of a source table
for disaster recovery.

CREATE OR REPLACE TABLE delta.”/some/archive/path™ CLONE my prod_table

Clone on Unity Catalog

User can use shallow clone to create new Unity Catalog
managed tables from existing Unity Catalog managed
tables. Shallow clone support for Unity Catalog allows user
to create tables with access control privileges independent
from their parent tables without needing to copy underlying
data files.

Create a shallow clone
The syntax to shallow clone unity catalog table is:

CREATE TABLE <catalog-name>.<schema-name>.<target-table-name>

SHALLOW CLONE <catalog-name>.<schema-name>.<source-table-name>

To create a shallow clone on Unity Catalog, user must have
sufficient privileges on both the source and target
resources. The permissions required are:

Resource Permissions required
Source table SELECT

Source schema USE SCHEMA

Source catalog USE CATALOG

Target schema USE SCHEMA, CREATE TABLE
Target catalog USE CATALOG




Query or modify a shallow cloned table

To query a shallow clone on Unity Catalog, user must have
sufficient privileges on the table and containing resources,
as detailed in the following table:

Resource Permissions required
Catalog USE CATALOG

Schema USE SCHEMA

Table SELECT




Data governance

Data governance ensures that data brings value and
supports the business strategy. Data governance
encapsulates the policies and practices to securely manage
the data assets within an organization. As the amount and
complexity of data are growing, more and more
organizations are looking at data governance to ensure the
core business outcomes. Data governance provides the
following outcomes:

« Consistent and high data quality.

« Reduced time to insight.

. Data democratization, that is enabling everybody in
an organization to make data-driven decisions.

« Support for risk and compliance for industry
regulations such as HIPAA, FedRAMP, GDPR, or
CCPA.

« Cost optimization, for example by preventing users
to start up large clusters and creating guardrails for
using expensive GPU instances.

Data-driven companies typically build their data
architectures for analytics on the Lakehouse. Data
governance for a data lakehouse provides the following key
capabilities:

« Unified catalog: A unified catalog stores all data, ML
models, and analytics artifacts, in addition to
metadata for each data object.

« Unified data access controls: A single and unified
permissions model across all data assets and all
clouds.



Data isolation: Data isolation can be achieved at
many levels like environment, storage location,
data objects of increasing granularity without losing
the ability to manage access and auditing centrally.
Data auditing: Data access is centrally audited with
alerts and monitoring capabilities to promote
accountability.

Data quality management: Robust data quality
management with built-in quality controls, testing,
monitoring, and enforcement to ensure accurate
and useful data.

Data lineage: Data lineage to get end-to-end
visibility into how data flows in Lakehouse from
source to consumption.

Data discovery: Easy data discovery to enable data
scientists, data analysts, and data engineers to
quickly discover and reference relevant data.

Data sharing: Data can be shared across clouds and
platforms.

Azure Databricks provides centralized governance for data
and Al with Unity Catalog and Delta Sharing.

Unity Catalog
Unity Catalog provides centralized access control, auditing,

lineage,

and data discovery capabilities across Azure

Databricks workspaces.

Key features of Unity Catalog include:

Unity Catalog offers a single place to administer
data access policies that apply across all
workspaces.

Unity Catalog’s security model allows
administrators to grant permissions in their existing



data lake at the level of catalogs, databases (also
called schemas), tables, and views.

« Unity Catalog automatically captures user-level
audit logs that record access to data.

« Unity Catalog captures lineage data that tracks how
data assets are created and used across all
languages.

« Unity Catalog lets user tag and document data
assets and provides a search interface to help data
consumers find data.

. Unity Catalog lets user easily access and query
account’s operational data, including audit logs,
billable usage, and lineage.

Unity Catalog object model
In Unity Catalog, the hierarchy of primary data objects flows
from metastore to table or volume:

« Metastore: The top-level container for metadata.
Each metastore exposes a three-level namespace
(catalog.schema.table) that organizes data.

. Catalog: The first layer of the object hierarchy, used
to organize data assets.

« Schema: Also known as databases, schemas are the
second layer of the object hierarchy and contain
tables and views.

« Volume: Volumes sit alongside tables and views at
the lowest level of the object hierarchy and provide
governance for non-tabular data.

« Table: At the lowest level in the object hierarchy are
tables and views.
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Metastores

A metastore is the top-level container of objects in Unity
Catalog. It stores metadata about data assets (tables and
views) and the permissions that govern access to them.
Metastore should be created and assigned to Azure
Databricks workspaces in the same region. For a workspace
to use Unity Catalog, it must have a Unity Catalog
metastore attached.

This metastore is distinct from the Hive metastore. If
workspace includes a legacy Hive metastore, the data in
that metastore will still be available alongside data defined
in Unity Catalog, in a catalog
named hive metastore. hive_metastore catalog is not
managed by Unity Catalog and does not benefit from the
same feature set as catalogs defined in Unity Catalog.

Each metastore is configured with a managed storage
location in cloud storage e.g. an Azure Data Lake Storage
Gen2 container in Azure account.

Managed storage
When an account admin creates a metastore, account
admin must associate a storage location in cloud storage



e.g. an Azure Data Lake Storage Gen2 container in Azure
account to use as managed storage.

Managed tables and managed volumes store data and
metadata files in managed storage. Managed storage
cannot overlap with external tables, external volumes, or
other managed storage.

Catalog

A catalog is the first layer of Unity Catalog’s three-level
namespace. It's used to organize data assets. Users can
see all catalogs on which they have been assigned the USE
CATALOG data permission.

Schemas

A schema (also called a database) is the second layer of
Unity Catalog’s three-level namespace. A schema organizes
tables and views. Users can see all schemas on which they
have been assigned the USE SCHEMA permission, along with
the USE CATALOG permission on the schema’s parent
catalog. To access or list a table or view in a schema, users
must also have SELECT permission on the table or view.

Tables

A table resides in the third layer of Unity Catalog’s three-
level namespace. It contains rows of data. To create a table,
users must have CREATE and USE SCHEMA permissions on the
schema, and they must have the use caTaALOG permission on
its parent catalog. To query a table, users must have
the seLect  permission on the table, the USE
SCHEMA permission on its parent schema, and the use
CATALOG permission on its parent catalog. A table can be
managed or external.

Managed Table:
Managed tables are the default way to create tables in Unity
Catalog. Unity Catalog manages the lifecycle and file layout
for these tables.



By default, managed tables are stored in the root storage
location that user configures while creating a metastore.
User can optionally specify managed table storage locations
at the catalog or schema levels, overriding the root storage
location. Managed tables always use the Delta table format.

When a managed table is dropped, its underlying data is
deleted from our cloud tenant within 30 days.

External tables

External tables are tables whose data lifecycle and file
layout are not managed by Unity Catalog. When user drops
an external table, Unity Catalog does not delete the
underlying data. User can manage privileges on external
tables and use them in queries in the same way as
managed tables.

External tables can use the following file formats:

DELTA

. CSV

- JSON

« AVRO

« PARQUET
« ORC

« TEXT

Views

A view is a read-only object created from one or more tables
and views in a metastore. It resides in the third layer of
Unity Catalog’s three-level namespace. A view can be
created from tables and other views in multiple schemas
and catalogs.

Identity management for Unity Catalog
Unity Catalog uses the identities in the Databricks account
to resolve users, service principals, and groups, and to



enforce permissions.

Unity Catalog users, service principals, and groups must
also be added to workspaces to access Unity Catalog data.

Admin roles for Unity Catalog
The following admin roles are required for managing Unity
Catalog:

« Account admins can manage identities, cloud
resources and the creation of workspaces and Unity
Catalog metastores. Account admins can enable
workspaces for Unity Catalog. They can grant both
workspace and metastore admin permissions.

« Metastore admins can manage privileges and
ownership for all securable objects within a
metastore, such as who can create catalog or query
a table. The account admin who creates the Unity
Catalog metastore becomes the initial metastore
admin. The metastore admin can also choose to
delegate this role to another user or group.

« Workspace admins can add users to an Databricks
workspace, assign them the workspace admin role,
and manage access to objects and functionality in
the workspace, such as the ability to create clusters
and change job ownership.

Data permissions in Unity Catalog

In Unity Catalog, data is secure by default. Initially, users
have no access to data in a metastore. Access can be
granted by either a metastore admin, the owner of an
object, or the owner of the catalog or schema that contains
the object.

Cluster access modes for Unity Catalog



To access data in Unity Catalog, clusters must be configured
with the correct access mode. If a cluster is not configured
with one of the Unity-Catalog-capable access modes (that is,
shared or assigned), the cluster can’t access data in Unity
Catalog.

Data lineage for Unity Catalog

User can use Unity Catalog to capture runtime data lineage
across queries. Lineage is captured down to the column
level, and includes notebooks, workflows and dashboards
related to the query.

Unity Catalog metastore

A metastore is the top-level container of objects in Unity
Catalog. It stores metadata about data assets (tables and
views) and the permissions that govern access to them.
User must create one metastore for each region in which
the organization operates. To create a metastore:

« User must be an Databricks account admin.

« The workspaces that user attach to the metastore
must be on the Databricks Premium plan.

« User must have permission to create:

o A storage account to use e.g. Azure Data
Lake Storage Gen?2.

o Be a Contributor or Owner of a resource
group in any subscription in the tenant.

« Create a storage container where the
metastore’s managed table data will be stored. This
storage container must be in an Azure Data Lake
Storage Gen2 account in the same region as the
workspaces user want to use to access the data.

« Create an identity that Databricks uses to give
access to that storage container. User can use
either an Azure managed identity or a service



principal as the identity that gives access to the
metastore’s storage container.

Unlike service principals, managed identities do not
require to maintain credentials or rotate secrets, and
they let user connect to an Azure Data Lake Storage
Gen2 account that is protected by a storage firewall.

« Provide Databricks with the storage container path
and identity.

Create a metastore

« Create an Azure Databricks access connector and
assign it permissions to the storage container
where user wants the metastore’s managed tables
to be stored.

An Azure Databricks access connector is a first-party
Azure resource that lets user connect a system-
assigned managed identity to an Azure Databricks
account. Make a note of the access connector’s
resource ID.

« Log in to the Azure Databricks account console.
« Click Data
« Click Create Metastore .
. Enter values for the following field
o Name for the metastore.

o Region where the metastore will be
deployed. This must be the same region as
the workspaces user wants to use to access
the data. Make sure that it matches the



https://accounts.azuredatabricks.net/login/

region of the access connector and storage
container that user created earlier.

o ADLS Gen 2 path: Enter the path to the
storage container that user will use as the
default root storage for managed table
data.

o Access Connector ID: Enter the Azure
Databricks access connector’s resource ID.

o Click Create.

« When prompted, select workspaces to link to the
metastore.

Enable a workspace for Unity Catalog

To enable an Azure Databricks workspace for Unity Catalog,
user should assign the workspace to a Unity Catalog
metastore. A metastore is the top-level container for data in
Unity Catalog. Each metastore exposes a 3-level namespace
(catalog.schema.table) by which data can be organized.

User can share a single metastore across multiple
Databricks workspaces in an account. Each linked
workspace has the same view of the data in the metastore,
and user can manage data access control across
workspaces. User can create one metastore per region and
attach it to any number of workspaces in that region.

Before user can enable workspace for Unity Catalog, user
must have a Unity Catalog metastore configured for
Databricks account.

To enable an existing workspace:

« As an account admin, log in to the account console
« Click data
« Click the metastore name.



« Click the Workspaces tab.

« Click Assign to workspaces.

« Select one or more workspaces.

« Click Assign

« On the confirmation dialog, click Enable.

To enable Unity Catalog when user creates a workspace:

« As an account admin, log in to the account console.

« Click Workspaces

« Click the Enable Unity Catalog toggle.

« Select the Metastore.

« On the confirmation dialog, click Enable.

« Complete the workspace creation configuration and
click Save.

When the assignment is complete, the workspace appears
in the metastore’s Workspaces tab, and the metastore
appears on the workspace’s Configuration tab.

Create clusters & SQL warehouses with Unity Catalog
access

SQL warehouses are used to run Databricks SQL workloads,
such as queries, dashboards, and visualizations. SQL
warehouses allow user to access Unity Catalog data and run
Unity Catalog-specific commands by default, as long as
workspace is attached to a Unity Catalog metastore.

Clusters are used to run workloads using notebooks or
automated jobs. To create a cluster that can access Unity
Catalog, the cluster must be attached to a Unity Catalog
metastore and must use a Unity-Catalog-capable access
mode (shared or single user).

User can work with data in Unity Catalog using either of SQL
warehouses for SQL Editor or clusters for notebooks.



To create a cluster that can access Unity Catalog, the
workspace must be attached to a Unity Catalog metastore.
Unity Catalog requires clusters that run Databricks Runtime
11.3 LTS or above.

Create and manage Catalogs
To create catalog, following requirements should be met:

User must be an Databricks metastore admin or
have been granted the CREATE CATALOG privilege
on the metastore

Databricks account must be on the Premium plan.
User must have a Unity Catalog metastore linked to
the workspace where user can perform the catalog
creation.

The compute resource that user use to run the
notebook or Databricks SQL to create the catalog
must be using a Unity Catalog compliant access
mode.

To create a catalog, user can use Data Explorer or a SQL
command. The steps are:

Data Explorer:

Log in to a workspace that is linked to the
metastore.

Click Data icon.

Click the Create Catalog button.

Optionally specify the location where data
for managed tables in the catalog will be stored.

Specify a location here only if user does not want
managed tables in this catalog to be stored in the



default root storage location (configured for the
metastore).

The path that user specifies must be defined in an
external location configuration, and user must have
the CREATE MANAGED STORAGE privilege on that
external location. User can also use a subpath of that
path.

« Click Create.

By default, the catalog is shared with all workspaces
attached to the current metastore. If the catalog will contain
data that should be restricted to specific workspaces, go to
the Workspaces tab and add those workspaces. Assign
permissions for catalog.

Using SQL

The SQL syntax for creating catalog is:

CREATE CATALOG [ IF NOT EXISTS ] <catalog-name>
[ MANAGED LOCATION '<location-path>"]
[ COMMENT <comment> ;

. <catalog-name>: A name for the cataloqg.

« <location-path>: Optional. Provide a storage
location path if user wants managed tables in this
catalog to be stored in a location that is different
than the default that was configured for the
metastore.

« <comment>: Optional description or other
comment.

For example, to create a catalog named testcatalog
CREATE CATALOG IF NOT EXISTS testcatalog;



Assign the required privileges to the catalog.
Using Python:
To create the catalog using python:

spark.sql("CREATE CATALOG IF NOT EXISTS testcatalog")

The default is to share the catalog with all workspaces
attached to the current metastore. User can optionally
assign a catalog to specific workspaces. If user uses
workspaces to isolate user data access, user may want to
limit catalog access to specific workspaces in his account.
Typical use cases for binding a catalog to specific
workspaces include:

« Ensuring that users can only access production data
from a production workspace environment.

« Ensuring that users can only process sensitive data
from a dedicated workspace.
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In this diagram, prod catalog IS bound to two production
workspaces. Suppose a user has been granted access to a
table in prod catalog called my table(USiNg GRANT SELECT ON
my_table TO <user>). The user can access my table only from the
Prod ETL and Prod Analytics workspaces. If the user tries to



access my table in the Dev workspace, user will receive an
error message.

Only Metastore admin or catalog owner can assign a catalog
to specific workspaces. To assign a catalog to specific
workspaces:

Log in to a workspace that is linked to the
metastore

Click Data
In the Data pane, on the left, click the catalog
name. Data Explorer pane will show

the Catalogs list. Select the catalog from the list.

On the Workspaces tab, clear the All workspaces
have access checkbox.

Click Assign to workspaces and enter or find the
workspace user wants to assign.

To revoke access, go to the Workspaces tab, select the
workspace, and click Revoke.

To view information about a catalog, user can use Data
Explorer or a SQL command.

Data explorer:

SOL

Log in to a workspace that is linked to the
metastore.

Click Data

In the Data pane, find the catalog and click its
name. Some details are listed at the top of the
page. Others can be viewed on the Schemas,
Details, Permissions and
Workspaces tabs.



User can run the SQL command in a notebook or Databricks
SQL editor. The following command returns the metadata of
an existing catalog. The metadata information includes
catalog name, comment, and owner.

DESCRIBE CATALOG <catalog-name>;

Use CATALOG EXTENDED to get full details.
To drop catalog:

DROP CATALOG [ IF EXISTS ] <catalog-name> [ RESTRICT | CASCADE ]

If user uses DROP CATALOG without the CASCADE option,
user must delete all schemas in the catalog
except information_ schema before user can delete the
catalog. This includes the auto-created default schema. Use
CASCADE option to delete catalog with all its schema.

For example, to delete a catalog named testcatalog and its
schemas:

DROP CATALOG testcatalog CASCADE

Python code to delete a catalog named testcatalog and its
schemas:

spark.sql("DROP CATALOG testcatalog CASCADE")

Create and manage schemas (databases)
A schema contains tables, views, and functions. Schema is
created inside catalog.

Requirements:

« User must have the USE CATALOG and CREATE
SCHEMA data permissions on the schema’s parent
catalog. All users have the USE CATALOG
permission on the main catalog by default.

« Databricks account must be on the Premium plan.



Unity Catalog metastore must be linked to the
workspace where user wants to create Schema.

The compute resource that user uses to run the
notebook or Databricks SQL to create the catalog
must be using a Unity Catalog compliant access
mode.

Create a schema
To create a schema (database), user can use Data Explorer
or SQL commands.

Data explorer

SQL

Log in to a workspace that is linked to the
metastore.

Click Data

In the Data pane on the left, click the catalog where
user wants to create the schema in.

In the detail pane, click Create database.

Give the schema a name

Optionally, specify the Ilocation where data
for managed tables in the schema will be stored.
Specify a location here only if user does not want
managed tables in this schema to be stored in the
default root storage Ilocation configured for
the metastore.

Click Create

Click Save

Run the following SQL commands in a notebook or
Databricks SQL editor. Items in brackets are optional.



USE CATALOG <catalog>;
CREATE { DATABASE | SCHEMA } [ IF NOT EXISTS ] <schema-name>
[ MANAGED LOCATION '<location-path>"]
[ COMMENT <comment> ]
[ WITH DBPROPERTIES ( <property-key = property value [, ...1>) ];

User can optionally omit the USE CATALOG statement and
replace <schema-name> with <catalog-name>.<schema-
name>.

Python
The code in python to create schema will be like:

spark.sqgl("USE CATALOG <catalog>")

spark.sql("CREATE { DATABASE | SCHEMA } [ IF NOT EXISTS ] <schema-name> "
\

"[ MANAGED LOCATION '<location-path>"1"\

“[ COMMENT <comment> ] "\

"[ WITH DBPROPERTIES ( <property-key = property value [, ... ]>)]")

« <catalog-name>: The name of the parent catalog
for the schema.

. <schema-name>: A name for the schema.

« <location-path>: Optional. Provide a storage
location path if user wants managed tables in this
schema to be stored in a location that is different
than the catalog’s or metastore’s root storage

location.
« <comment>: An optional comment.
« <property-key> = <property-value> [ , ... ]: The

Spark SQL properties and values to set for the
schema.



To drop the schema:

SQL:

DROP SCHEMA [ IF EXISTS ] <schema-name> [ RESTRICT | CASCADE ]

If user uses DROP SCHEMA without the cAscADE option, user
must delete all tables in the schema before user can delete
it.

For example, to delete a schema named testschema and its
tables:

DROP SCHEMA testSchema CASCADE

To drop schema using python,

spark.sql("DROP SCHEMA testSchema CASCADE")

Create Tables

Unity Catalog has two types of tables,
managed and external tables.

Managed tables

Managed tables are the default way to create tables in Unity
Catalog. Unity Catalog manages the lifecycle and file layout
for these tables.

By default, managed tables are stored in the root storage
location that user configures when user creates a
metastore. User can optionally specify managed table
storage locations at the catalog or schema levels, overriding
the root storage location. Managed tables always use
the Delta table format.

When a managed table is dropped, its underlying data is
deleted from user’s cloud tenant within 30 days.

To create a managed table, run the following SQL
command.



CREATE TABLE <catalog-name>.<schema-name>.<table-name>
(
<column-specification>

);

« <catalog-name>: The name of the catalog. This
cannot be the hive metastore catalog that is
created automatically for the Hive metastore
associated with the Azure Databricks workspace.

+ <schema-name>: The name of the schema.

. <table-name>: A name for the table.

. <column-specification>: The name and data type
for each column.

The python command will be:

spark.sql("CREATE TABLE <catalog-name>.<schema-name>.<table-name> "
II(II
" <column-specification>"

")")

The below example creates a table of name Student in
“main” catalog and default schema.

Using SQL:

CREATE TABLE main.default.Student

(
StudentID INT,

FirstName INT,
LastName INT
);

INSERT INTO main.default.Student VALUES



(10, 'Amit', 'Kumar'),
(20, 'John', 'mathew');

To drop a table:

DROP TABLE IF EXISTS catalog_name.schema_name.table_name;

External tables

External tables are tables whose data is stored outside of
the managed storage location specified for the metastore,
catalog, or schema. Use external tables only when user
requires direct access to the data outside of Azure
Databricks clusters or Databricks SQL warehouses.

When user runs DROP TABLE on an external table, Unity
Catalog does not delete the underlying data. To create an
external table with SQL, specify a LOCATION path in the
CREATE TABLE statement. External tables can use the
following file formats:

DELTA

. CSV

- JSON

« AVRO

« PARQUET
« ORC

« TEXT

To create external table, user must have the following
permissions:

« CREATE EXTERNAL TABLE on the external location
that references the cloud storage path user
specifies.

« CREATE TABLE on the parent schema.



« USE SCHEMA on the parent schema.
« USE CATALOG on the parent catalog.

The following command creates an external table. It can be
run on notebook or the SQL query editor.

CREATE TABLE <catalog>.<schema>.<table-name>
(
<column-specification>
)
LOCATION ‘'abfss://<bucket-path>/<table-directory>";

« <catalog>: The name of the catalog that will
contain the table.

« <schema>: The name of the schema that will
contain the table.

« <table-name>: A name for the table.

. <column-specification>: The name and data type
for each column.

« <bucket-path>: The path on cloud tenant where
the table will be created.

« <table-directory>: A directory where the table will
be created. Use a unique directory for each table.

Once a table is created in a path, users can no longer
directly access the files in that path from Databricks even if
they have been given privileges on an external location or
storage credential to do so.

The python code for creating table will be like:

spark.sql("CREATE TABLE <catalog>.<schema>.<table-name> "
II(II

" <column-specification>"



II) n
"LOCATION ‘abfss://<bucket-path>/<table-directory>"")

Create a table from the files

To create a new managed table and populate it with data in
cloud storage, use the following example:

CREATE TABLE <catalog>.<schema>.<table-name>

(

<column-specification>

)
SELECT * from <format>. abfss://<path-to-files>";

Using python:

spark.sql("CREATE TABLE <catalog>.<schema>.<table-name> "
n(
" <column-specification> "
vy
"SELECT * from <format>. abfss://<path-to-files>"")

To create an external table and populate it with data in
user’s cloud storage, add a
LOCATION clause:
CREATE TABLE <catalog>.<schema>.<table-name>
(
<column-specification>
)
USING <format>
LOCATION 'abfss://<table-location>'
SELECT * from <format>. abfss://<path-to-files>";

Using python:



spark.sql("CREATE TABLE <catalog>.<schema>.<table-name> "

II( n

" <column-specification> "

II) n

"USING <format> "
"LOCATION 'abfss://<table-location>""

"SELECT * from <format>. abfss://<path-to-files>"")

Insert records from a path into an existing table
To insert records from a bucket path into an existing table,
use the cory INTO command.

COPY INTO <catalog>.<schema>.<table>

FROM (
SELECT *

FROM 'abfss://<path-to-files>'

)

FILEFORMAT = <format>;

<catalog>: The name of the table’s parent catalog.
<schema>: The name of the table’'s parent
schema.

<path-to-files>: The bucket path that contains the
data files.

<format>: The format of the files, for
example delta.

<table-location>: The bucket path where the table
will be created.

User must have the following permissions:

USE CATALOG on the parent catalog and USE
SCHEMA on the schema.



. MODIFY on the table.

. READ FILES on the external location associated
with the bucket path where the files are located, or
directly on the storage credential if user is not using
an external location.

. To insert records into an external table, user
needs CREATE EXTERNAL TABLE on the bucket
path where the table is located.

To insert into an external table, add a LOCATION clause:

COPY INTO <catalog>.<schema>.<table>
LOCATION 'abfss://<table-location>'
FROM (

SELECT *

FROM ‘abfss://<path-to-files>'

)
FILEFORMAT = <format>;

Create views

A view is a read-only object composed from one or more
tables and views in a metastore. It resides in the third layer
of Unity Catalog’s three-level namespace. A view can be
created from tables and other views in multiple schemas
and catalogs.

Dynamic views can be used to provide row and column-level
access control, in addition to data masking.

The owner of a view must have the ability to read the tables
and views referenced in the view. A reader of a view does
not need the ability to read the tables and views referenced
in the view, unless they are using a cluster with Single User
access mode. To read from a view from a cluster with Single



User access mode, user must have SELECT on all
referenced tables and views.

Create a view

To create a view, run the following SQL command. Items in
brackets are optional.

CREATE VIEW <catalog-name>.<schema-name>.<view-name=> AS

SELECT <query>;

The python code for the view creation:

spark.sql("CREATE VIEW <catalog-name>.<schema-name>.<view-name> AS
SELECT <query>")

SQL Example:

CREATE VIEW main.default.StudentView AS
SELECT

StudentID,

FirstName,

LastName,
FROM main.default.Student;

Drop a view
User must be the view’s owner to drop a view. To drop a
view, run the following SQL command:

DROP VIEW IF EXISTS catalog_name.schema_name.view_name;

Manage external locations and storage credentials
External locations and storage credentials allow Unity
Catalog to read and write data on user’'s cloud tenant on
behalf of users. These external locations and storage
credentials are used for:



« Creating, reading from, and writing to external
tables.

« Overriding the metastore’s default managed
table storage location at the catalog or schema
level.

« Creating a managed or external table from
files stored on user’s cloud tenant.

« Inserting records into tables from files stored on
user’s cloud tenant,.

« Directly exploring data files stored on user’s cloud
tenant.

Storage credentials

A storage credential represents an authentication and
authorization mechanism for accessing data stored on
user's cloud tenant, using either an Azure managed
identity (strongly recommended) or a service principal.

Each storage credential is subject to Unity Catalog access-
control policies that control which users and groups can
access the credential. If a user does not have access to a
storage credential in Unity Catalog, the request fails and
Unity Catalog does not attempt to authenticate to cloud
tenant on the user’'s behalf. User can mark a storage
credential as [read-only] to prevent users from writing to
external locations that use the storage credential.

External location

An external location is an object that combines a cloud
storage path with a storage credential that authorizes
access to the cloud storage path. Each storage location is
subject to Unity Catalog access-control policies that control
which users and groups can access the credential. If a user
does not have access to a storage location in Unity Catalog,



the request fails and Unity Catalog does not attempt to
authenticate to cloud tenant on the user’s behallf.

User can mark an external location as [read-only] to prevent
users from writing to that location, which means that users
cannot create tables or volumes (whether external or
managed) in that location.

External locations can be used not just to define storage
locations for external tables and volumes, but also for
managed tables and volumes. They can be used to define
storage locations for managed tables and volumes at the
catalog and schema levels, overriding the metastore root
storage location.

Databricks recommends using external locations rather than
using storage credentials directly.

. To create storage credentials, user must be an
Azure Databricks account admin. The account
admin who creates the storage credential can
delegate ownership to another user or group to
Mmanage permissions on it.

. To create external locations, user must be a
metastore admin or a user with the CREATE
EXTERNAL LOCATION privilege.

. External locations must use Azure Data Lake
Storage Gen2 storage accounts that have a
hierarchical namespace.

Create a storage credential

User can use either an Azure managed identity or a service
principal as the identity that authorizes access to our
storage container. Managed identities are strongly
recommended. They have the benefit of allowing Unity
Catalog to access storage accounts protected by network



rules, which isn’'t possible using service principals. Managed
identities remove the need to manage and rotate secrets.

To create a storage credential using a managed identity:

Create an Azure Databricks access connector and
assign it permissions to the storage container that
user would like to access. An Azure Databricks
access connector lets us connect managed
identities to an Azure Databricks account. Make a
note of the access connector’s resource ID.

Log in to Unity Catalog-enabled Azure Databricks
workspace as a user who has the account admin
role on the Azure Databricks account.

Click Data

At the bottom of the screen, click Storage
Credentials .

Click +Add > Add a storage credential .

On the Create a new storage credential dialog,
select Managed identity (recommended) .

Enter a name for the credential, and enter the
access connector’s resource ID.

If user wants other users to have read-only access
to the external locations that use this storage
credential, select Read only. It is optional.

Click Save.

To view the list of all storage credentials and to view a
storage credential in a metastore, user can use Data
Explorer or a SQL command.

Using Data explorer:



« Log in to a workspace that is linked to the
metastore.

« Click Data.

. At the bottom of the screen, click Storage
Credentials. This will display list of storage
credentials.

. Click the name of a storage credential to see
its properties.

Using SQL.:
Run the following command in a notebook or the Databricks

SQL editor to see all storage credentials.
SHOW STORAGE CREDENTIALS;

To see the properties of a given storage credential:
DESCRIBE STORAGE CREDENTIAL <credential-name>;

Using Python:

Run the following command in a notebook.
display(spark.sql("SHOW STORAGE CREDENTIALS"))

To see the properties of a given storage credential:
display(spark.sql("DESCRIBE STORAGE CREDENTIAL <credential-name>"))

Manage permissions for a storage credential

User can grant permissions directly on the storage
credential, but Databricks strongly recommends that user
references it in an external location and grant permissions
to that instead. An external location combines a storage
credential with a specific path and authorizes access only to
that path and its contents.



User can grant and revoke the following permissions on a
storage credential:

- CREATE TABLE
« READ FILES
« WRITE FILES

To show grants on a storage credential, use a command like
the following:

SHOW GRANTS [<principal>] ON STORAGE CREDENTIAL <storage-credential-

name>=,;

« <principal>: The email address of the account-level
user or the name of the account level group to
whom to grant the permission.

. <storage-credential-name>: The name of a storage
credential.

Using Python:
display(spark.sql("SHOW GRANTS [<principal>] ON STORAGE CREDENTIAL

<storage-credential-name>"))

To grant permission to a principle to create an external table
using a storage credential directly:

GRANT CREATE EXTERNAL TABLE ON STORAGE CREDENTIAL <storage-

credential-name> TO <principal>;

Using Python:
spark.sql("GRANT CREATE EXTERNAL TABLE ON STORAGE CREDENTIAL

<storage-credential-name> TO <principal>")

To grant permission to select from an external table using a
storage credential directly:



GRANT READ FILES ON STORAGE CREDENTIAL <storage-credential-name> TO

<principal>;

Using Python

spark.sql("GRANT READ FILES ON STORAGE CREDENTIAL <storage-credential-

name> TO <principal>")

Change the owner of a storage credential:

A storage credential’s creator is its initial owner. To change
the owner to a different account-level user or group, do the
following:

Using SQL:

ALTER STORAGE CREDENTIAL <credential-name> OWNER TO <principal>;

Using Python:
spark.sql("ALTER STORAGE CREDENTIAL <credential-name> OWNER TO

<principal>")

Delete a storage credential

Using SQL:
DROP STORAGE CREDENTIAL IF EXISTS <credential-name>;

Using Python:
spark.sql("DROP STORAGE CREDENTIAL IF EXISTS <credential-name>")

Manage external locations

User can create an external location using Data Explorer,
the Databricks CLI, SQL commands in a notebook or
Databricks SQL query, or Terraform .

Run the following SQL command in a notebook or the
Databricks SQL editor.

CREATE EXTERNAL LOCATION <location-name>



URL 'abfss://<container-name>@<storage-
account>.dfs.core.windows.net/<path>'
WITH ([STORAGE] CREDENTIAL <storage-credential-name>);

« <location-name>: A name for the external location.

« <bucket-path>: The path in cloud tenant that this
external location grants access to.

. <storage-credential-name>: The name of the storage
credential that contains details about a service
principal that is authorized to read to and write from
the storage container path.

External locations only support Azure Data Lake Storage
Gen2 storage.
Describe an external location:

To see the properties of an external location, user can use
Data Explorer or a SQL command.

Run the following command in a notebook or the Databricks
SQL editor. Replace <location-name> with the name of the
location.

DESCRIBE EXTERNAL LOCATION <location-name>;

Using Python:
display(spark.sql("DESCRIBE EXTERNAL LOCATION <location-name>"))

Rename an external location:
ALTER EXTERNAL LOCATION <location-name> RENAME TO <new-location-

name>=,;

Change external location URI:
ALTER EXTERNAL LOCATION location_name SET URL '<url>' [FORCE];

Change the storage credential of an external location:



ALTER EXTERNAL LOCATION <location-name> SET STORAGE CREDENTIAL

<credential-name>

Manage permissions for an external location

User can grant and revoke the following permissions on an
external location using Data Explorer, the Databricks CLI,
SQL commands in a notebook or Databricks SQL query,
or Terraform.

- CREATE TABLE
« READ FILES
« WRITE FILES

To show grants on an external location:
Using SQL:
SHOW GRANTS [<principal>] ON EXTERNAL LOCATION <location-name>;

« <location-name>: The name of the external
location that authorizes reading from and writing to
the storage container path in your cloud tenant.

« <principal>: The email address of an account-level
user or the name of an account-level group.

Using Python:
display(spark.sql("SHOW GRANTS [<principal>] ON EXTERNAL LOCATION

<location-name>"))

To grant permission to use an external location to create a
table:
GRANT CREATE EXTERNAL TABLE ON EXTERNAL LOCATION <location-name> TO

<principal>;

To grant permission to read files from an external location:



GRANT READ FILES ON EXTERNAL LOCATION <location-name> TO <principal>;

Change the owner of an external location:

An external location’s creator is its initial owner. To change
the owner to a different account-level user or group, run the
following command in a notebook or the Databricks SQL
editor

ALTER EXTERNAL LOCATION <location-name> OWNER TO <principal>

Delete an external location:
To delete (drop) an external location user must be its owner.
To delete an external location, use the following command:

DROP EXTERNAL LOCATION IF EXISTS <location-name>;

Mark an external location or storage credential as read-only.

If user wants users to have read-only access to an external
location, user can use Data Explorer to mark the external
location as read-only.

If user wants users to have read-only access to all external
locations that are referenced by a specific storage
credential, user can use Data Explorer to mark that storage
credential as read-only.

Making storage credentials and external locations read-only:

« Prevents users from writing to files in those external
locations, regardless of any write permissions
granted by the Azure managed identity and
regardless of the Unity Catalog permissions granted
on that external location.

« Prevents users from creating tables or volumes
(whether external or managed) in those external
locations.



To mark storage credentials and external locations as read-
only:

« In Data Explorer, find the storage credential or

external location, click the - kebab menu (also
known as the three-dot menu) on the object row,
and select Edit.

« On the edit dialog, select the Read only option.

Query data

To query data in a table or view, the user must have the use
CATALOG permission on the parent catalog, the wuse
SCHEMA  permission on the parent schema, and
the seLecT permission on the table or view.

To read from a view on a cluster that uses single-user access
mode, the user must have SELECT on all referenced tables
and views.

Three-level namespace notation

In Unity Catalog, a table or view is contained within a parent
catalog and schema. User can refer to a table or view using
two different styles of notation. User can use USE CATALOG
and USE statements to specify the catalog and schema:

Using SQL:

USE CATALOG <catalog-name>;
USE SCHEMA <schema-name>;

SELECT * from <table-name>;

As an alternative, user can use three-level namespace
notation:

SELECT * from <catalog-name>.<schema-name>.<table-name>;



Using Python:

spark.sql("USE CATALOG <catalog-name>")
spark.sql("USE SCHEMA <schema-name>")

display(spark.table("<table-name=>"))

Explore tables and views in Databricks SQL
User can explore tables and views without the need to run a
cluster by using Data Explorer.

To open Data Explorer, click Data in the sidebar.
In Data Explorer, select the catalog and schema to
view its tables and views.

For objects in the Hive Metastore, user must be running a
SQL warehouse to use Data Explorer.

To select from a table or view using a notebook:

In the sidebar, click New > Notebook.

Attach the notebook to a SQL
warehouse or cluster that uses an access mode that
supports Unity Cataloqg.

In the notebook, create a query that references
Unity Catalog tables and views.

To select from a table or view using the SQL Editor:

In the sidebar, click SQL Editor.

Select a SQL warehouse.

Compose a query. To insert a table or view into the
query, select a catalog and schema, then click the
name of the table or view to insert.

Click Run.



To explore data stored in an external location before user
creates tables from that data, user can use Data Explorer or
the following commands:

SELECT * FROM <format>. abfss://<path-to-files>";

Using Python:
display(spark.read.load("abfss://<path-to-files>"))

Apply Tags

Tags are attributes containing keys and optional values that
user can apply to different securable objects in Unity
Catalog. Tagging is useful for organizing and categorizing
different securable objects within a metastore. Using tags
also simplifies search and discovery of data assets.

Tagging is currently supported on catalogs, schemas, and
tables.

To create securable object tags using the Data Explorer Ul:

« Click Data in the sidebar.

« Select a securable object to view the tag
information.

« Click Add/Edit Tags to manage tags for the current
securable object. User can add and remove multiple
tags simultaneously in the tag management model.

Work with Unity Catalog and the legacy Hive
metastore

If workspace was in service before it was enabled for Unity
Catalog, it likely has a Hive metastore that contains data
that user wants to continue to use.

The Hive metastore appears as a top-level catalog
called hive_metastore in the three-level namespace.



For example, user can refer to a table called sales_detail in
the sales schema in the legacy Hive metastore by using the
following notation:

SELECT * from hive_metastore.sales.sales_detail;

By using three-level namespace notation, user can join data
in a Unity Catalog metastore with data in the legacy Hive
metastore.

The following example joins results from
the sales current table in the legacy Hive metastore with
the sales historical table in the Unity Catalog metastore
when the order _id fields are equal.

SELECT * FROM hive_metastore.sales.sales_current
JOIN main.shared_sales.sales_historical
ON hive_metastore.sales.sales_current.order id =

main.shared_sales.sales_historical.order _id;

A join with data in the legacy Hive metastore will only work
on the workspace where that data resides. Trying to run
such a join in another workspace results in an
error. Databricks recommends that user upgrades legacy
tables and views to Unity Catalog.

Upgrade tables and views to Unity Catalog

Tables in the catalog hive_metastore are registered in the
Hive metastore. Any other catalogs listed are governed by
Unity Catalog.

To upgrade a table to Unity Catalog as a managed table, use
the below command

CREATE TABLE <catalog>.<new-schema>.<new-table>
AS SELECT * FROM hive_metastore.<old-schema>.<old-table>;



« <catalog>: The Unity Catalog catalog for the new
table.

« <new-schema>: The Unity Catalog schema for the
new table.

. <new-table>: A name for the Unity Catalog table.

. <old-schema>: The schema for the old table, such
as default.

. <old-table>: The name of the old table.

This command creates a managed table in which data is
copied into the storage location that was nominated when
the metastore was set up.



Databricks SQL
Databricks SQL lets us run all SQL and Bl applications at
scale with better price and performance.

Create a SQL warehouse

A SQL warehouse is a simplified compute resource that lets
us run SQL commands on data objects within Databricks
SQL.

Databricks recommends creating a serverless SQL
warehouse. Serverless SQL warehouses are fully managed
by Azure Databricks and give users instant access to elastic
compute resources.

To create a SQL warehouse:

« Click SQL Warehouses in the sidebar then Create
SQL Warehouse.

« Enter a Name for the warehouse.

« Accept the default warehouse settings or edit them.

« Click Create.

. The permissions modal appears, where user can
give users or groups access to the warehouse.

To grant Databricks SQL access to a user:

« As a workspace admin, go to Admin Settings.
« Click to the Users tab.
. In the user row, click Databricks SQL access.

To manually start a stopped SQL warehouse, click SQL
Warehouses in the sidebar then click the start icon next to
the warehouse.

To stop a running warehouse, click the stop icon next to the
warehouse.



Warehouse settings
Creating a SQL warehouse in the Ul requires the following

settings:

Cluster Size: Represents the size of the driver node
and number of worker nodes associated with the
cluster. To reduce query latency, increase the size.
Auto Stop: It determines whether the warehouse
stops if it's idle for the specified number of
minutes. Idle SQL warehouses continue to
accumulate DBU and cloud instance charges until
they are stopped.

Scaling: It sets the minimum and maximum number
of clusters that will be used for a query. The default
is @ minimum and a maximum of one cluster. User
can increase the maximum clusters if user wants to
handle more concurrent users for a given query.
Azure Databricks recommends a cluster for every
10 concurrent queries.

Type: It determines the type of
warehouse. Databricks SQL supports three
warehouse types, each with different levels of
performance and feature support.

Warehouse Types
Databricks SQL supports three warehouse types, each with
different levels of performance and feature support.

Serverless

Supports all features in the pro SQL warehouse type, as well
as advanced Databricks SQL performance features. SQL
warehouses run in the customer’s Azure Databricks account
using serverless compute.



Classic
Supports entry level performance features and a limited set
of Databricks SQL functionality.

To upgrade existing SQL warehouses to serverless:

. In the sidebar, click SQL Warehouses.
. In the Actions column, click the vertical

ellipsis then click Upgrade to Serverless.

Pro

Supports additional Databricks SQL performance features
(compared to classic) and supports all Databricks SQL
functionality.

Monitor a SQL Warehouse
To monitor a SQL warehouse, click the name of a SQL
warehouse and then the Monitoring tab.

Materialized Views

In Databricks SQL, materialized views are Unity Catalog
managed tables that allow users to precompute results
based on the latest version of data in source tables.
Materialized views reduce cost and improve query latency
by pre-computing slow queries and frequently used
computations.

Requirements for materialized view are:

« User must use a Unity Catalog-enabled workspace
to create and refresh materialized views.

. To create Databricks SQL materialized views user’s
account must be enabled to use serverless SQL
warehouses .

Create a materialized view



To create a materialized view, use the CREATE
MATERIALIZED VIEW statement. The following example

Creates

the materialized view materialized view from the

base table SalesData:

CREATE MATERIALIZED VIEW materialized_view

AS SELECT

date, sum(sales) AS sum_of sales

FROM

SalesData

GROUP BY
Date

The user who creates a materialized view is the materialized
view owner and needs to have the following permissions:

SELECT privilege on the base tables referenced by
the materialized view.

USE CATALOG and USE SCHEMA privileges on the
catalog and schema containing the source tables
for the materialized view.

USE CATALOG and USE SCHEMA privileges on the
target catalog and schema for the materialized
view.

CREATE TABLE and CREATE MATERIALIZED
VIEW privileges on the schema containing the
materialized view.

Refresh a materialized view

The REFRESH operation refreshes the materialized view to
reflect the latest changes to the base table. To refresh a
materialized view, use the REFRESH MATERIALIZED VIEW
statement. Only the owner can REFRESH the materialized



view. The following example refreshes the materialized view
materialized view:

REFRESH MATERIALIZED VIEW materialized_view

Schedule materialized view refreshes

User can configure a Databricks SQL materialized view to
refresh automatically based on a defined schedule. User can
configure this schedule with the SCHEDULE clause when
user creates the materialized view or add a schedule with
the ALTER VIEW statement.

CREATE MATERIALIZED VIEW materialzed_view
COMMENT 'Daily sales numbers'
SCHEDULE CRON '0 0 O * * 7 *
AS SELECT date AS date, sum(sales) AS sumOfSales
FROM SalesData
GROUP BY date;

The materialized view created above will be refreshed daily
at midnight.

Drop a materialized view

To drop a materialized view, use the DROP VIEW statement.
The following example drops the materialized view
materialized view:

DROP MATERIALIZED VIEW materialized_view

Control access to materialized views

A materialized view owner can grant SELECT privileges to
other users. Users with SELECT access to the materialized
view do not need SELECT access to the tables referenced by
the materialized view.

To grant access to a materialized view, use
the GRANT statement:



GRANT
privilege_type [, privilege_type ] ...

ON <mv_name> TO principal

The following example creates a materialized view and
grants select privileges to a user:

CREATE MATERIALIZED VIEW <mv_name> AS SELECT FROM <base_table>
GRANT SELECT ON <mv_name> TO user

Revoke privileges from a materialized view
To revoke access from a materialized view, use
the REVOKE statement.

REVOKE
privilege_type [, privilege_type ]
ON <name> FROM principal

When seLecT privileges on a base table are revoked from the
materialized view owner or any other user who has been
granted seLect privileges to the materialized view, the
materialized view owner or user granted access is still able
to query the materialized view. However, the following
behaviour occurs:

. The materialized view owner or others who have
lost access to a materialized view can no
longer REFRESH that materialized view, and the
materialized view will become stale.

. If automated with a schedule, the next
scheduled REFRESH fails or is not run.

The following example revokes the seLect privilege from
materialized_view.



REVOKE SELECT ON materialized_view FROM userl;

Materialized views always return the latest snapshot version
of data available in base tables at the time of the last
refresh. Materialized view can be incrementally refreshed or
sometimes it may be full refresh as well.

Materialized view is incrementally refreshed in case of the
following conditions.

« The materialized view can query only a single table
or perform an INNER JOIN and UNION ALL (or
combinations of INNER JOIN and UNION ALL) on
multiple tables.

« The materialized view must have a GROUP BY in the
main select clause.

« The materialized view SELECT clause supports the
following aggregate functions. Any aggregate
function not in this list is not supported:

o SUM
o COUNT

Incremental refresh is not supported for materialized views
that include:

« Window functions.
. HAVING clauses.
« Subqueries in SELECT or WHERE clauses.

Materialized views cannot be created using the Delta
Lake time travel feature. LEFT JOINs and OUTER JOINs are
not supported.



Change data feed is not enabled by default on materialized
views. To enable the change data feed on a materialized
view, specify the appropriate table setting at creation time.
If user have an existing materialized view, user must drop it
and re-create it.

The following example enables change data feed on a
materialized view:

CREATE MATERIALIZED VIEW <mv_name> TBLPROPERTIES
(delta.enableChangeDataFeed = true) AS SELECT FROM <base_table>

To optimize the performance of materialized view refreshes,
Databricks uses a cost model to select the technique used
for the refresh. The following table describes these
techniques:

Technique

Increment
al
refresh?

Descriptio
n

FULL RECOMPUTE

No

The
materialize
d view was
fully
recomputed

NO OP

Not
applicable

The
materialize
d view was
not
updated
because no
changes to
the base
table were
detected.




ROW_BASED or Yes The

PARTITION_OVERWRITE materialize
d view was

incremental
ly refreshed
using the
specified
technique.

Materialized views do not support identity columns or
surrogate keys. User cannot run ad
hoc OPTIMIZE or VACUUM commands against materialized
views.
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